SEE 2074 (2018) अनिवार्य गणित

नयाँ पाठ्यक्रम

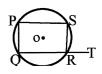
दिइएका निर्देशनका आधारमा आफ्नै शैलीमा सिर्जनात्मक उत्तर दिनुहोस् ।

समय: ३ घन्टा

पूर्णाङ्क - १००

सबै प्रश्नहरूको उत्तर दिनुहोस् । Answer all the questions.

- (क) यदि कुनै सामानको विक्रय मूल्य रु. x र मूल्य अभिवृद्धि कर रकम रु. y छ भने मूल्य अभिवृद्धि करको दर कित हुन्छ ? लेख्नुहोस् ।
 If the selling price of an article is Rs. x and the value added tax amount is Rs. y, what is the rate of value added tax ? Write it.
 - (ख) आधार भुजा k cm र छड्के उचाइ l cm भएको वर्ग आधार पिरामिडको पूरा सतहको क्षेत्रफल कित हुन्छ ? लेख्नुहोस् ।


 What is the total surface area of a square based pyramid having base side k cm and slant height l cm. Write it.
- २. (a) $\sqrt[m]{y}$ मा सर्डको क्रम कित हुन्छ ? लेख्नुहोस् । Write down the order of surd in $\sqrt[m]{y}$.
 - (ख) एउटा वर्गीकृत तथ्याङ्कको मध्यिका निकाल्ने सूत्र $Md = L + \frac{N/2 \text{c.f.}}{\text{f}} \times \text{h}$ मा c.f. ले के जनाउँछ ?

What does c.f. denote in the formula $Md = L + \frac{N/2 - c.f.}{f} \times h$ for the calculation of median in a grouped data?

३. (क) दिइएको चित्रमा $PQ \parallel ST$, $PU \parallel QT \ \tau \ PS \parallel QR$ छन् । यदि $\angle PSR = 90^{\circ}$ छ भने आयत $PQRS \ \tau$ समानान्तर चतुर्भुज PQTU को SUR T क्षेत्रफलबीच के सम्बन्ध छ ? लेख्नुहोस् । in the given figure, $PQ \parallel ST$, $PU \parallel QT$ and $PS \parallel QR$. If $\angle PSR = 90^{\circ}$ what is the relation between the areas of rectangle PQPS and the parallel ogram PQTU?

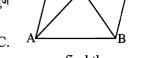
between the areas of rectangle PQRS and the parallelogram PQTU? Write it.

(ख) दिइएको चित्रमा $\angle SPQ = 97^{\circ}$ भए $\angle SRT$ को मान कित हुन्छ ? पत्ता लगाउनुहोस् ।

In the given figure, $\angle SPQ = 97^{\circ}$, what is the value of $\angle SRT$? Find it.

समूह 'ख' (Group 'B') [4x(2+2)+3x(2+2+2)=34]

- ४. (क) अमेरिकामा उच्चिशिक्षा अध्ययन गर्न जानको लागि सोहनलाई \$3500 चाहिएको छ। यदि \$1 = ने.रु. 105 र बैंकले सो को 2% किमसन लिने गर्दछ भने सोहनलाई कित नेपाली रुपैयाँ आवश्यक पर्दछ ? पत्ता लगाउनुहोस्।
 - Sohan needs \$3500 for the higher study in America. If \$1 = NRs. 105 and the bank charges 2% as commission, how much Nepali rupees does Sohan require? Find it.
 - (ख) एउटा सहरको वर्तमान जनसंख्या 50,000 छ। यदि जनसंख्या वर्षेनि 10% ले बढ्दै जान्छ भने कित वर्षपछि त्यो सहरको जनसंख्या 66,550 होला ? पत्ता लगाउनुहोस्।
 The present population of a town is 50,000. If the population increases
 - by 10% every year, after how many years the population of the town will be 66,550? Find it.
- ५. (क) एउटा बेलनाकार ट्याङ्कीमा 498.96 लिटर पानी अटाउँछ । यदि यसको उचाइ 0.9 मिटर
 भए आधारको अर्धव्यास पत्ता लगाउनुहोस् ।
 A cylindrical tank contains 498.96 litres of water. If its height is 0.9 m
 - (ख) यदि एउटा अर्धगोलाको पूरा सतहको क्षेत्रफल 7392 वर्ग से.मी. भए यसको अर्धब्यास पत्ता लगाउनहोस ।
 - If the total surface area of a hemi-sphere is 7392 square cm then find its radius.
 - (ग) यदि एउटा सोलीको उचाइ आधारको अर्धव्यासको तीन गुणा र यसको आयतन 729π घन से.मी. भए सोलीको आधारको अर्धव्यास पत्ता लगाउन्होस् ।
 - If the height of a cone is three times the radius of the base and its volume is 729π cubic cm then find the radius of the base of the cone.
- ६. (क) म.स. पत्ता लगाउनुहोस् (Find the H.C.F. of) : $x^2 + x + 1$ and $x^7 x^4$


then find the radius of the base.

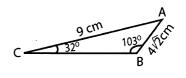
- (ख) सरल गर्नुहोस् (Simplify): $4\sqrt[3]{192} 4\sqrt[3]{375} + 2\sqrt[3]{24}$
- 9. (क) यदि $x = 10^a$, $y = 10^b$ र x^b . $y^a = 100$ भए प्रमाणित गर्नुहोस्: xy = 1. If $x = 10^a$, $y = 10^b$ and x^b . $y^a = 100$ then prove that: xy = 1.

(ख) सरल गर्नुहोस् (Simplify) :
$$\dfrac{1}{c\!-\!d}\!-\!\dfrac{c\!+\!d}{c^2\!-\!d^2}$$
 .

(ग) सरल गर्नुहोस् (Simplify):
$$\frac{x^2 + xy + y^2}{x + y} + \frac{x^2 - xy + y^2}{x - y}$$
.

 क) सँगैको चित्रमा DC को मध्यिबन्दु E हो । यदि समानान्तर चतुर्भुज ABCD को क्षेत्रफल 52 वर्ग से.मी. भए चतुर्भुज ABCE को क्षेत्रफल निकाल्नुहोस् ।
 In the adjoining figure E is the mid-point of DC.

If the area of the parallelogram ABCD is 52 square cm, find the area of the quadrilateral ABCE.


(ख) चित्रमा O वृत्तको केन्द्रबिन्दु र MN \parallel KL छ। यदि \angle NML= 40° भए, \angle KOM को मान पत्ता लगाउनुहोस्। In the figure, O is the centre of circle and MN \parallel KL. If \angle NML = 40° , then find the value of \angle KOM.

(ग) चित्रमा, L वृत्तको केन्द्र, MN व्यास र M स्पर्शविन्दु छ । यदि
 ∠MCL = 55° भए, ∠CLN को मान पत्ता लगाउनुहोस् ।
 In the figure, L is centre of circle, NM is diameter and M is the point of contact. If ∠MCL = 55°, then find the value of ∠CLN.

९. (क) दिइएको त्रिभुज ABC मा $\angle ABC = 103^{\circ}$ र $\angle ACB = 32^{\circ}$ छन् । यदि $AB = 4\sqrt{2}$ से.मी. र AC = 9 से.मी. भए त्रिभुज ABC को क्षेत्रफल निकालन्होस् ।

In the given triangle ABC, \angle ABC = 103° and \angle ACB = 32°. If AB = $4\sqrt{2}$ cm and AC = 9 cm, find the area of \triangle ABC.

(ख) एउटा निरन्तर श्रेणीमा मध्यिका पर्ने वर्गान्तर 10-15 छ र यसको अघिल्लो वर्गान्तरसम्मको सिञ्चित बारम्बारता 28 छ। यदि मध्यिका पर्ने वर्गान्तरको बारम्बारता 15 र उक्त श्रेणीको बारम्बारताको योग 65 भए, मध्यिका निकाल्नुहोस्।
In a continuous series median lies in the class interval 10-15 and the cumulative frequency of its preceeding class is 28. If the frequency of median class is 15 and the sum of the frequencies of the series is 65, find the median.

१०. (क) राम्ररी फिटिएको 52 ओटा तासको गर्ड्डीबाट एउटा तास भिकियो । उक्त तासबाट एक्का अथवा राजा पर्ने सम्भाव्यता कित हुन्छ ? पत्ता लगाउनुहोस् ।

A card is drawn from well-shuffled pack of 52 playing cards. What is the probability that it is either an ace or a king? Find it.

(ख) एउटा भोलामा उस्तै र उत्रै 5 ओटा राता र 3 ओटा सेता बलहरू छन्। एकपछि अर्को गरी पुन: नराखीकन दुईओटा बलहरू भिकियो। सम्भावित परिणामहरूलाई एउटा वृक्षचित्रमा प्रस्तुत गर्नहोस्।

There are 5 red and 3 white balls of same shape and size in a bag. Two balls are drawn from the bag one after another without replacement. Show all the possible outcomes in a tree diagram.

समूह 'ग' (Group 'C')

[10x4=40]

99. एउटा नगरपालिकाको चुनावमा M र N दुई उम्मेदवारहरु मेयर पदका लागि उठेछन् र त्यहाँ मतदाताको सूचीमा 30000 जना रहेछन्। मतदाताले एक जनालाई मात्रै मत खसाल्नुपर्ने थियो। 15000 जनाले M लाई, त्यस्तै 12000 जनाले N लाई र 2000 जनाले दुवैलाई पनि मत दिएछन्। In an election of a municipality two candidates M and N stood for the post of Mayor and 30000 people were in the voter list. Voters were supposed to cast the vote for a single candidate. 15000 people cast vote for M, 12000 people cast for N and 2000 people cast vote even for both.

(i) यी जानकारीलाई भेनचित्रमा प्रस्तुत गर्नुहोस्।

Show these information in a Venn-diagram.

(ii) कति जनाले मत खसालेनन् ? पत्ता लगाउनुहोस् ।

How many people didn't cast vote? Find it.

(iii) कति मत सदर भयो ? पत्ता लगाउनुहोस्।

How many votes were valid? Find it.

१२. एउटा साइकलको अंकित मूल्यमा 10% छुट दिई 13% मूल्य अभिवृद्धि कर लगाएर बेचियो । यदि मूल्य अभिवृद्धि करसिंहतको मूल्य र छुटपिंछको मूल्यबीचको फरक रु.585 भए साइकलको अंकित मूल्य पत्ता लगाउनुहोस् ।

After allowing 10% discount on the marked price of a Cycle, 13% VAT was levied and sold it. If the difference betwen the selling price with VAT and selling price after discount is Rs. 585, find the marked price of that Cycle.

- १३. एउटा त्रिभुजाकार जग्गाका भुजाहरु 2:3:4 को अनुपातमा छन्। यदि यसको परिमिति 900 मिटर भए, उक्त जग्गाको क्षेत्रफल कित हुन्छ? पत्ता लगाउनुहोस्।

 The sides of a triangular field are in the ratio of 2:3:4. If its perimeter is 900 m, what is the area of that field? Find it.
- १४. ल.स. निकाल्नुहोस् (Find the L.C.M of) : $a^4 + a^3 a^2 a$, $a^4 a$ and $5a^2 5$
- १५. दुई अङ्कले बनेको एउटा सङ्ख्यामा अङ्कहरुको योगफल 5 छ । यदि सो सङ्ख्याबाट 27 घटाइयो भने अङ्कहरुको स्थान परिवर्तन हुन्छ भने उक्त सङ्ख्या पत्ता लगाउनुहोस् ।

 The sum of the digits in a two digits number is 5. If 27 is subtracted from the number the places of the digits are interchanged. Find the number.
- 9६. एउटै आधार AB र उही समानान्तर AB र FC को बीच बनेका समानान्तर चतुर्भुजहरू ABCD र ABEF को क्षेत्रफल बराबर हुन्छन् भनी प्रमाणित गर्नुहोस्।
 Prove that the parallelograms ABCD and ABEF standing on the same base AB and between the same parallels AB and FC are equal in area.
- 9७. लम्बाइ 5.5 से.मी. र चौडाइ 4.5 से.मी. भएको आयत ABCD को क्षेत्रफलसँग बराबर हुने गरी एउटा कोण 45° भएको त्रिभुज EBF को रचना गर्नुहोस्।

 Construct a rectangle ABCD with length 5.5 cm and breadth 4.5 cm. Also construct a triangle EBF having one angle 45° and equal to the area of the rectangle.
- १८. चक्रीय चतुर्भुज MNOP का सम्मुख कोणहरूबीचको सम्बन्ध प्रयोगद्वारा खोजी गर्नुहोस् । (कम्तीमा 3 से.मी. अर्धव्यास भएका दुईओटा वृत्तहरू आवश्यक छन् ।)

 Explore experimentally the relationship between opposite angles of a cyclic quadrilateral MNOP. (Two circles having radii at least 3 cm are necessary)
- १९. एउटा वृत्ताकार पोखरीको व्यास 100 मिटर छ र यसको बीचमा एउटा खम्बा गाडिएको छ । एउटा व्यक्तिले पोखरीको किनाराबाट खम्बाको टुप्पोको उन्नतांश कोण $\theta^{\rm O}$ पाएछ । यदि पोखरीको गिहराइ 1.5 मिटर र खम्बाको जम्मा उचाइ 51.5 मिटर भए $\theta^{\rm O}$ को मान पत्ता लगाउनुहोस् । The diameter of a circular pond is 100 meter and a pillar is fixed at the centre of the pond. A person finds the angle of elevation of the top of the pillar is $\theta^{\rm O}$ from the bank of the pond. If the depth of the pond is 1.5 meter and total height of the pillar is 51.5 meter, then find the value of $\theta^{\rm O}$.

२०. तल दिइएको आँकडाको तेस्रो चतुर्थांश $(Q_3) = 35$ भए m को मान पत्ता लगाउनुहोस्। Find the value of m if third quartile (Q_3) of the data given below is 35:

प्राप्ताङ्क (Marks Obtained)	0-10	10-20	20-30	30-40	40-50
विद्यार्थी संख्या (No.of Students)	3	7	15	m	5

[4x5=20]

२१. एउटा बैंकले खाता A मा 10% प्रतिवर्ष अर्धवार्षिक चक्रीय ब्याजदर र खाता B मा 12% प्रतिवर्ष वार्षिक चक्रीय ब्याजदर कायम गरेको छ । यदि तपाई 2 वर्षका लागि रु. 30,000 सो बैंकमा जम्मा गर्दै हुनुहुन्छ भने कुन खातामा जम्मा गर्नुहुन्छ र किन ? गणना गरी कारणसिहत उल्लेख गर्नुहोस् ।

A bank has fixed the rate of interest 10% p.a. semi-annually compound interest in account A and 12% per annum annually compound interest in account B. If you are going to deposit Rs. 30,000 for 2 years in the same bank in which account will you deposit and why? Give your reason with calculation.

२२. एउटा पानी ट्याङ्की बेलनाकार र अर्धगोलाकार भाग मिलेर बनेको छ । सो ट्याङ्कीको पूरा उचाइ 20~m छ र आधारको क्षेत्रफल $154~m^2$ छ । उक्त ट्याङ्कीमा प्रतिलिटर 45~पैसाका दरले पानी भर्न जम्मा कित खर्च लाग्ला ? पत्ता लगाउनुहोस् ।

A water tank is formed with the combination of cylinder and hemisphere. The total height of the tank is 20 m and base area is 154 m². If the tank is filled with water at the rate of 45 paisa per litre, what is the total cost to fill the water? Find it.

२३. सरल गर्नुहोस् (Simplify):
$$\frac{\left(v^2 - \frac{1}{w^2}\right)^v \left(v - \frac{1}{w}\right)^{w-v}}{\left(w^2 - \frac{1}{v^2}\right)^w \left(w + \frac{1}{v}\right)^{v-w}}$$

२४. PQRS एउटा चक्रीय चतुर्भुज हो । यदि ∠QPS र ∠QRS का अर्धकहरुले वृत्तलाई क्रमशः विन्दुहरु A र B मा भेट्छन् भने AB वृत्तको व्यास हो भनी प्रमाणित गर्नुहोस् ।

PQRS is a cyclic quadrilateral. If the bisectors of \angle QPS and \angle QRS meet the circle at the points A and B respectively, then prove that AB is the diameter of the circle.

माध्यमिक शिक्षा परीक्षा २०७४ (SEE 2018) उत्तरकुञ्जिका (Marking Scheme)

पूर्णाङ्क:- १००

विषय: अनिवार्य गणित

उत्तरपुस्तिका परीक्षण कुञ्जिका उत्तरपुस्तिका परीक्षणको निम्ति परीक्षकलाई सामान्य मार्गनिर्देशन हो । परीक्षकले उत्तरको शुद्धता, स्तरीयता, मौलिकता आदि हेरी आवश्यकता अनुसार विवेक प्रयोग गरी स्तर अनुसार सही, स्पष्ट, उपयुक्त, मापनीय र स्तरीय मूल्याङ्कन गर्नुपर्ने छ । सम्भव भएसम्म कुञ्जिकाले निर्देश गरेको परिधि र सीमाभित्र रही मूल्याङ्कन गर्नुपर्ने छ ।

Note: Give the relevant mark(s) for other correct method

प्रश्न नं.	Note: Give the relevant mark(s) for other correct method. उत्तर	अंक
	समूह "क"	
१ क	I. $VAT\% = \frac{y}{x} \times 100$	1
१ ख	I. T.S.A. of Sq. pyramid = $(k^2 + 2kl)$ sq. c.m.	1
२क	I. Order of $\sqrt[m]{y}$ is m	1
२ ख	I. C.f denotes the cumulative frequency of preceeding class interval.	1
३ क	$I. \qquad \text{Rect. PQRS} = \Box \text{PQTU}$	1
३ ख	$I. \qquad \angle SRT = \angle SPQ = 97^{\circ}.$	1
	समूह "ख"	1
४ क	1. $$3500 = NRs. 105x3500 = 367500$	1
	II. With 2% comm. = Rs. $3,74,850$	1
४ ख	1. $66550 = 50000(1 + \frac{10}{100})^T$	1
	II. $\therefore T = 3 \text{ yrs}$	1
५ क	I. $\pi r^2 h = 498.96 \text{ litres}$	1
	$\frac{22}{7} \times r^2 \times 90 \text{ cm} = 498960 \text{ cm}^3$	
	II. $r = 42 \text{ cm}$	1
५ ख	I. $3\pi r^2 = 7392 \text{ cm}^2$	1
	II. $r = 28 \text{ cm}$	1

५ ग	I.	$\frac{1}{3}\pi r^2 h = 729\pi \text{ cm}^3$	1
		$\frac{1}{3}\pi r^2 3r = 729\pi \text{ cm}^3$	
	II.	r = 9 cm	1
६क	I.	$1^{\text{st}} \operatorname{Expn} = x^2 + x + 1$	
		$2^{\text{nd}} \exp n = x^4 (x^3 - 1) = x^4 (x-1) (x^2 + x + 1)$	1
	II.	H.C.F. = $x^2 + x + 1$	1
६ ख	I.	$4 \times 4\sqrt[3]{3} - 4 \times 5\sqrt[3]{3} + 2 \times 2\sqrt[3]{3}$	1
	II.	0	1
७ क	I.	$x^b y^a = 100$	1
		$10^{ab} \cdot 10^{ab} = 10^2$	
	II.	ab = 1	1
७ ख	I.	$\frac{1}{c-d} = \frac{c+d}{(c+d)(c-d)}$	1
		$\frac{c+d-c-d}{(c+d)(c-d)}$	
	II.	0	1
७ ग	I.	$\frac{x^8 - y^8 + x^8 + y^8}{(x+y)(x-y)}$	1
	II.	$\frac{2x^2}{x^2-y^2}$	1
८ क	I.	Area of $\triangle AEB = \frac{1}{2} \times 52 \text{ cm}^2 = 26 \text{ cm}^2$	
		and area of $\triangle BEC = \frac{1}{2} \times 26 \text{ cm}^2 = 13 \text{ cm}^2$	1
	II.	Area of the parallelogram ABCE = $(26+13)$ cm ² = 39 cm ²	1
८ ख	I.	\angle KLM = 40° & \angle LKO = 40°	1
	II.	\angle KOM = 80°	1
८ ग	III.	$\angle CMN = 90^{\circ}$	1

	IV. $\angle CLN = 145^{\circ}$	1
९ क	I. $\angle A = 180^{\circ} - 103^{\circ} - 32^{\circ} = 45^{\circ}$	
	Area of $\triangle ABC = \frac{1}{2} 4\sqrt{2} \times 9 \sin 45^{\circ} cm^{2}$	
	$= \frac{1}{2} \times 4\sqrt{2} \times 9 \times \frac{1}{\sqrt{2}} cm^2$	1
	II. = $18 cm^2$	1
	11. —18 cm-	
९ ख	I. $M_d = 10 + \frac{65}{2} - 28 \times 5$	1
	$=10+\frac{32.5-28}{3}$	1
	II. $= 11.5$	
१० क	I. $P(Ace) = \frac{4}{52}$; $P(king) = \frac{4}{52}$	1
	II. P (Ace or king) = $\frac{4}{52} + \frac{4}{52} = \frac{2}{13}$	1
१० ख	I. Representing the outcomes in probability tree diagram along their	1
	probabilities	1
	P(R)=4/7 $P(R)=5/8$ $P(W)=3/7$ $P(W)=3/7$	
	P(W)=3/8 $P(W)=2/7$ $P(W)=2/7$	
	समूह 'ग'	
99	I. $n(\cup) = 30000$, $n_o(M) = 15000$, $n_o(N) = 12000$, $n(M \cap N) = 2000$ II. $= 15000 + 12000 + 2000 + x = 30000$	1+1
	x= 1000	1

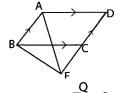
	1	$II n_0(M) + n_0(N) = 15000 + 12000 = 27000$	1
9२	I.	Let M.P. of cycle be Rs. x	
• •		SP after discount = $(100 - D)\% \times M.P.$	
		$= (100-10)\% \times x = 0.9x$	1
	II.	SP including $VAT = (100+V)\% \times SP$ after discount	_
	11.	$= (100+13)\% \times 0.9x$	1
		= 1.017x	
	III.	By the question,	1
	111.	SP including VAT – SP after discount = 585	1
		1.017x - 0.9x = 585	1
	IV.	MP of cycle $(x) = Rs. 5000$	
0.0	I.	Let sides of triangular field = $2x$, $3x$ and $4x$	
१३	1.	P = $2x + 3x + 4x$	
		Or, 900m = 9x	1
	11	x = 100m	
	II.	Sides of triangular field:	
		a = 2x = 200m, $b = 3x = 300m$, $c = 4x = 400m$	1
	III.	$S = \frac{a+b+c}{2} = \frac{200m+300m+400m}{2} = \frac{900m}{2} = 450m$	
	111.	2 2 2 2	1
	IV.	$A = \sqrt{S(s-a)(s-b)(s-c)} = \sqrt{450(450-200)(450-300)(450-400)}$	1
		$=29047.38 \text{ m}^2$	
98	I.	$1^{st} \exp = a^4 + a^3 - a^2 - a$	
(-		$= a(a+1) (a^2-1)$	1
		= a(a+1)(a+1)(a-1)	
	II.	$2^{\text{nd}} \exp = a^4 - a$	
		$= a(a^3 - 1)$	1
		$= a(a-1)(a^2+a+1)$	1
	III.	Third $\exp = 5a^2 - 5$	
		$=5(a^2-1)$	
		=5(a+1)(a-1)	1
	IV.	L.C. $M = 5a (a+1)^2 (a-1) (a^2 + a + 1)$	
		2,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	1
٩ لا	I.	Let digit of one's place = x	
۱۸		digit of 10's place = y	
		$\therefore \text{required number} = 10 \text{ y} + \text{x}$	1
		In first condition $x + y = 5$	
	II.	In second condition $10y + x - 27 = 10x + y$ or $y - x = 3$	1
	III.	By solving equation, $x = 1$, $y = 4$	1
	IV.	$\therefore \text{ required number} = 10y + x = 41$	1
	1 V .	roquirou numbur — roy + x — 41	

१६	I.	correct figure + given	1
14	II.	To prove : Area ($\square ABCD$) = Area ($\square ABEF$)	1
		Construction: Draw BG\(\perp\)AB	1
	III.	Ar. $(\Box ABCD)=AB \times BG \rightarrow Area \text{ of Parallelogram}=b \times h \dots (i)$	
		$Ar.(\Box ABEF) = AB \times BG \rightarrow Area \text{ of Parallelogram} = b \times h \dots$ (ii)	1
	IV.	Area (\square ABCD) = Area (\square ABEF) \rightarrow from (i) and (ii)	
		Note: Give marks for alternative method also	1
१७	I.	Construction of rectangle ABCD	1
	II. III.	Construction of angle of triangleEBF Construction of triangle	1
	IV.	Justify.	1
	I.		1
95	II.	Correct figure and to verify Verification table with correct measurement	1 1+1
	III.	Conclusion	1+1
0.0	I.	Correct figure and description	1
१९	1.	A	1
	II.	In the right angled $\triangle AOB$	
		515 16 50	
		$\tan\theta = \frac{\partial A}{\partial B} = \frac{50}{50}$	1
	III.	Or $\tan\theta = 1 = \tan 45^{\circ}$	1
	111.	or unio	
	IV.	$\theta = 45^{\circ}$	1
२०	1	Marks (x) No. of Students (f) c.f	
		0-10 3 3	
		0-10 10-20	
		20-30 15 25	
		30-40 m 25+m	
		40-50 5 30+m	1
	I.	For the correct c.f. table.	
	II.	\therefore Q ₃ = 35. So, Q ₃ class = 30 - 40	1
	111	$35-30=\frac{\frac{2(80+m)}{4}-25}{4}\times 10$	
	III.	$35-30=\frac{4}{100}\times 10$	1
	13.7	A — (2 10) xs 3	1
	IV.	$4m = (3m - 10) \times 2$	
		m = 10	
		समूह 'घ'	
२१	I.	$H.Y.C.I = P\left[\left(1 + \frac{R}{200}\right)^{2C} - 1\right]$	
		$=30000\left[\left(1+\frac{10}{200}\right)^{2\times2}-1\right]$	1
	11	-	1
	II.	= Rs. 6465.18	<u> </u>

	III.	$Y.C.I = P\left[\left(1 + \frac{R}{100}\right)^{T} - 1\right]$	
	111.	[]	1
		$=30000\left[\left(1+\frac{12}{100}\right)^2-1\right]$	1
	IV.	= Rs. 7632	1
	V.	Finding difference with logical reason and deoposited in account B.	
२२	I.	Radious of tank $(r) = 7 \text{ m}$	1
	II.	Height of cylindrical part (h) = 13 m	1
	III.	Volume of tank = $Axh + \frac{2}{3}\pi r^3$	
		$= 154 \times 13 + \frac{2}{3} \times \frac{22}{7} \times 343$	
		$= 2720.67 \text{ m}^3$	1
	IV.	Volume of water $(V) = 2720670 L$	1
	V.	Total cost $(T) = Rs. 1224301.50$	1
२३			1
\ \	I.	$\frac{\left(V - \frac{1}{W}\right)^{V} \left(V + \frac{1}{W}\right)^{W} \left(V - \frac{1}{W}\right)^{W - V}}{\left(W - \frac{1}{V}\right)^{W} \left(W + \frac{1}{V}\right)^{W} \left(W + \frac{1}{V}\right)^{W - W}}$	
	II.	$\frac{\left(v-\frac{1}{W}\right)^{W}\left(v+\frac{1}{W}\right)^{V}}{\left(w-\frac{1}{V}\right)^{W}\left(w+\frac{1}{V}\right)^{V}}$	1
	III.	$\left(\frac{\frac{VW-1}{\frac{VV}{V}-1}}{\frac{VW-1}{V}}\right)^W \left(\frac{\frac{VW+1}{\frac{VV}{V}-1}}{\frac{VW-1}{V}}\right)^V$	1
	IV.	$\left(\frac{v}{w}\right)^{w} \left(\frac{v}{w}\right)^{v}$	1
	V.	$\left(\frac{v}{w}\right)^{W+V}$	1
२४	I.	Correct fig. with construction(join P and B)	1
	II.	$\angle APS = \frac{1}{2} \angle QPS$ and $\angle BRS = \frac{1}{2} \angle QRS$	1
	III.	$\angle APS + \angle BRS = 90^{\circ}$	1
	IV.	∠BPS = ∠BRS	1
	V.	∴ $\angle APB = 90^{\circ}$. So, AB is the diameter.	1

SEE 2074 (2018) अनिवार्य गणित नयाँ पाठयकम

दिइएका निर्देशनका आधारमा आफ्नै शैलीमा सिर्जनात्मक उत्तर दिन्होस् ।


समयः ३ घन्टा पूर्णाङ्क - १००

सबै प्रश्नहरूको उत्तर दिनुहोस् । Answer all the questions.

सम्ह 'क' (Group 'A')

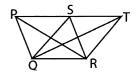
[3x(1+1)=6]

- १. (क) यदि कुनै सामानको अंकित मूल्य रु.x, छुट रकम रु. y र मूल्य अभिवृद्धि कर रु. z छ भने सो सामानको मूल्य अभिवृद्धि करसिहतको विकय मूल्य कित हुन्छ ? पत्ता लगाउनुहोस् । If the marked price of an article is Rs. x, discount amount is Rs. y and the VAT amount is Rs. z, then what is the selling price of the article including VAT? Find it.
 - (ख) आधार भुजा x cm र छड्के उचाइ y cm भएको वर्ग आधार पिरामिडको पूरा सतहको क्षेत्रफल कित हुन्छ, लेख्नुहोस्।
 Write down the total surface area of a square based pyramid having base side x cm and slant height y cm.
- २. (क) $p\sqrt{x}$ मा सर्डको क्रम कित हो ? लेख्नुहोस् । Write down the order of surd in $p\sqrt{x}$.
 - (ख) दिइएको सूत्र $Q_i = L + \frac{N_4 c.f.}{f} \times h$ मा h ले के जनाउँछ ? लेखनुहोस् । What does h denote in the formula $Q_i = L + \frac{N_4 c.f.}{f} \times h$? Write it.
- ३. (क) दिइएको चित्रमा AB || DE र AD || BC छन् भने △ABE र △ABCD को क्षेत्रफलबीचको सम्बन्ध लेख्नुहोस्।
 In the given figure, AB || DE and AD || BC. Write the relation between the areas of △ABE and △ABCD.
 - (ख) दिइएको वृत्तमा ∠PQR र ∠PSR को के सम्बन्ध छ ? लेख्नुहोस्।
 In the given circle, what is the relation of ∠PQR and ∠PSR? Write it.

समृह 'ख' (Group 'B') [4x(2+2)+3x(2+2+2)=34]

४. (क) नेपाल राष्ट्र बैंकको मुद्रा विनिमय दरअनुसार अमेरिकी डलर 1 को खरिद दर र विकी दर क्रमश: ने.रु. 103.72 र ने.रु. 104.32 छन् भने,

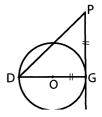
According to the money exchange rate of Nepal Rastra Bank, the purchasing and selling rates of one American dollar are NRs. 103.72 and NRs. 104.32 respectively, then,

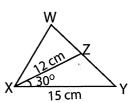

- i) नेपाली v.57,376 सित कित अमेरिकी डलर साट्न सिकन्छ ? पत्ता लगाउनुहोस् । How many American dollars can be exchanged with NRs. 57,376? Find it.
- ii) \$500 सित कित नेपाली रुपैयाँ साट्न सिकन्छ ? पत्ता लगाउनुहोस्। How much Nepali rupees can be exchanged with \$500? Find it.
- (ख) वि.सं. 2069 को सुरुमा र वि.सं. 2070 को अन्तमा एउटा गाउँको जनसङ्ख्या क्रमशः 5000 र 5408 थियो भने वार्षिक जनसङ्ख्या वृद्धिदर कित रहेछ ? पत्ता लगाउनुहोस्। In the beginning of 2069 B.S. and at the end of 2070 B.S., the population of village was 5000 and 5408 respectively. What is the annual population growth rate? Find it.
- ५. (क) एउटा बेलनाकार पानी ट्याङ्कीको क्षमता 539 लिटर छ। यदि यसको उचाइ 1.4 मिटर भए आधारको अर्धव्यास पत्ता लगाउनुहोस्।
 The capacity of a cylindrical water tank is 539 litres. If its height is 1.4 meter, then find the radius of the base.
 - (ख) यदि एउटा गोलाको सतहको क्षेत्रफल 30184 वर्ग से.मी. भए यसको अर्धव्यास पत्ता लगाउनुहोस्।

If the surface area of a sphere is 30184 square cm, then find its radius.

- (ग) यदि एउटा सोलीको उचाइ आधारको अर्धव्यासको तीन गुणा र यसको आयतन 512π घन से.मी. भए सोलीको आधारको अर्धव्यास पत्ता लगाउनुहोस्। If the height of a cone is three times the radius of the base and its volume is 512π cubic cm, then find the radius of the base of the cone.
- ६. (क) म.स. पत्ता लगाउनुहोस् (Find the H.C.F. of) : $x^4 x$ and $x^2 + x + 1$
 - (ख) सरल गर्नुहोस् (Simplify): $5\sqrt[3]{54} 3\sqrt[3]{128} + 2\sqrt[3]{16}$
- 9. (क) यदि $p = 10^m$, $q = 10^n$ र $p^n.q^m = 100$ भए प्रमाणित गर्नुहोस्: mn = 1. If $p = 10^m$, $q = 10^n$ and $p^n.q^m = 100$ then prove that: mn = 1.
 - (ख) सरल गर्नुहोस् (Simplify): $\frac{1}{e-f} \frac{e+f}{e^2-f^2}$.

(ग) सरल गर्नुहोस् (Simplify):
$$\frac{p^2+pq+q^2}{p+q} + \frac{p^2-pq+q^2}{p-q}$$


द्र. (क) सँगैको चित्रमा PQRS एउटा समबाहु चतुर्भुज हो। जसमा PS लाई T सम्म बढाइएको छ। यदि PR = 10 से.मी. र SQ = 8 से.मी.भए Δ QRT को क्षेत्रफल निकाल्नुहोस्। In the adjoining figure PQRS is a rhombus in which PS is produced to T. If PR = 10 cm and SQ = 8 cm, find the area of Δ QRT.


 (ख) सँगैको चित्रमा O वृत्तको केन्द्रबिन्दु हो । यदि ∠QRT=65° भए ∠RQT र ∠QPT को मान पत्ता लगाउनुहोस् ।
 In the adjoining figure, O is the centre of the circle. If ∠QRT = 65°, find the values of the ∠RQT and ∠QPT.

(ग) चित्रमा O वृत्तको केन्द्र, PG स्पर्शरेखा र G स्पर्शिबन्दु छ । यदि
PG = DG भए ∠DPG को मान पत्ता लगाउनुहोस् ।
In the figure, O is centre of circle, PG is tangent to
the circle and G is point of contact. If PG = DG,
then find the value of ∠DPG.

९. (क) दिइएको चित्रमा ΔWXY को भुजा WY लाई XZ ले आधा गरेको छ । यदि XZ=12 से.मी., XY=15 से.मी. र $\angle ZXY=30^\circ$ भए ΔWXY को क्षेत्रफल निकालनुहोस् ।

In the given figure, the side WY of the Δ WXY is bisected by XZ. If XZ = 12 cm, XY = 15 cm and \angle ZXY = 30° then find the area of Δ WXY.

(ख) मध्यक 5 भएको एउटा निरन्तर श्रेणीमा $\Sigma fx=p$ र $\Sigma f=10$ भए p को मान निकालनुहोस् ।

In a continuous series, the mean is 5 . If $\Sigma fx = p$ and $\Sigma f = 10$, then find the value of p.

१०. (क) एउटा थैलीमा 1 देखि 20 सम्म लेखिएका जम्मा 20 ओटा उस्तै र उत्रै बलहरु छन्। कुनै एउटा बल स्वतन्त्र रुपले निकाल्दा (िकक्दा) त्यो बल 5 अथवा 7 को गुणाङ्क पर्ने सम्भाव्यता कित हुन्छ ? पत्ता लगाउनुहोस्।

There are 20 balls of same size and shape in a bag numbered from 1 to 20. A ball is taken out independently from the bag, what is the probability of getting a ball that is multiple of 5 or 7? Find it.

(ख) एउटा भोलामा एउटा पहेंलो, एउटा रातो र एउटा सेतो गरी तीनओटा उस्तै र उत्रै मिठाइहरू राखिएका छन्। उक्त भोलाबाट नहेरीकन एउटा मिठाई तान्ने र उक्त मिठाई पुन: भोलामा नराखी अर्को मिठाई तान्दा आउन सक्ने परिणामहरुका सम्भाव्यताहरुलाई वृक्षचित्रमा देखाउनुहोस्।

There are one yellow, one red and one white sweets in a bag. A sweet is drawn randomly and without replacing the sweet another sweet is drawn from the bag. Show the possible outcomes of the probabilities in a tree diagram.

समूह 'ग' (Group 'C') [10x4=40]

99. एउटा नगरपालिकाको चुनावमा A र B दुई उम्मेदवारहरु मेयर पदका लागि उठेछन् र त्यहाँ मतदाताको सूचीमा 25000 जना रहेछन् । मतदाताले एक जनालाई मात्रै भोट खसाल्नुपर्ने थियो । 12000 जनाले A लाई, त्यस्तै 10000 जनाले B लाई र 1000 जनाले दुवैलाई पनि मत दिएछन् ।

In an election of a municipality two candidates A and B stood for the post of Mayor and 25000 people were in the voter list. Voters were supposed to cast the vote for a single candidate. 12000 people cast vote for A, 10000 people cast for B and 1000 people cast vote even for both.

(i) यी जानकारीलाई भेनचित्रमा प्रस्तुत गर्नुहोस्।

Show these information in a Venn-diagram.

(ii) कति जनाले भोट खसालेनन् ? पत्ता लगाउन्होस् ।

How many people didn't cast vote? Find it.

(iii) कति भोट सदर भयो ? पत्ता लगाउनुहोस्।

How many votes were valid? Find it.

9२. एउटा रेडियोंको अंकित मूल्यमा 10% छुट दिई 13% मूल्य अभिवृद्धि कर लगाएर बेचियो। यदि मु.अ.करसिहतको मूल्य र छुटपिछको मूल्यबीचको फरक रु.1170 भए सो रेडियोको अंकित मूल्य पत्ता लगाउनुहोस्।

After allowing 10% discount on the marked price of a radio, 13% VAT was levied and sold it. If the difference between the selling price with VAT and selling price after discount is Rs. 1170, find the marked price of that radio.

RE-109'BC'

- १३. एउटा त्रिभुजाकार जग्गाको भुजाहरु 6:9:10 को अनुपातमा छन्। यदि यसको परिमिति 2500 मिटर भए उक्त जग्गाको क्षेत्रफल कित हुन्छ ? पत्ता लगाउनुहोस्।
 - The sides of a triangular field are in the ratio of 6:9:10. If its perimeter is 2500 m, what is the area of that field. Find it.
- १४. ल.स. निकाल्नुहोस् (Find the L.C.M of) : $x^4 + x^3 x^2 x$, $x^4 x$ and $4x^2 4$
- १५. दुई अङ्कले बनेको एउटा संङ्ख्यामा अङ्कहरुको योगफल 10 छ। यदि सो सङ्ख्याबाट 72 घटाइयो भने अङ्कहरुको स्थान परिवर्तन हुन्छ। सुरुको सङ्ख्या पत्ता लगाउनुहोस्।

 The sum of the digits in a two digits number is 10. If 72 is subtracted from the number the place of the digits interchanged. Find the initial number.
- 9६. समान आधार XY र उही समानान्तर रेखाहरु XY र RZ बीच बनेको ΔRXY को क्षेत्रफल समानान्तर चतुर्भुज PXYZ को क्षेत्रफलको आधा हुन्छ भनी प्रमाणित गर्नुहोस्।
 Prove that the area of triangle RXY is half of the area of parallelogram PXYZ standing on the same base XY and between the same parallels lines XY and RZ.
- 9७. लम्बाइ 7.1 से.मी. र चौडाइ 6.1 से.मी. भएको आयतको क्षेत्रफलसँग बराबर हुने गरी एउटा कोण 60° भएको त्रिभुजको रचना गर्नुहोस्।

 Construct a rectangle with length 7.1 cm and breadth 6.1 cm. Also construct a triangle having one angle 60° and equal in the area to the rectangle.
- १८. चक्रीय चतुर्भुज PQRS का सम्मुख कोणहरुबीचको सम्बन्ध प्रयोगद्वारा खोजी गर्नुहोस्। (कम्तीमा 3 से.मी. अर्धव्यास भएका दुईओटा वृत्तहरु आवश्यक छन्।)
 Explore experimentally the relationship between opposite angles of a cyclic

explore experimentally the relationship between opposite angles of a cyclic quadrilateral PQRS. (Two circles having radii at least 3 cm are necessary)

9९. एउटा वृत्ताकार पोखरीको व्यास 120 मिटर छ। उक्त पोखरीको ठीक बीचमा गाडिएको खम्बाको दुप्पोमा सो पोखरीको किनाराबाट हेर्दा θ^o को उन्नतांश कोण बनेको पाइयो। यदि पोखरीको गहिराइ 2 मिटर र खम्बाको उचाइ 62 मी भए θ^o को मान पत्ता लगाउनुहोस्। The diameter of a circular pond is 120 meter. The angle of elevation of the top of pillar fixed in the middle of the pond as observed from the edge of the pond is found to be θ^o . If the depth of the pond is 2 meter and height of

the pillar is 62 m, then find the value of θ^{o} .

२०. तल दिइएको आँकडाको तेस्रो चतुर्थांश 390 भए p को मान पत्ता लगाउनुहोस्। Find the value of p if third quartile of the data given below is 390:

दैनिक नाफा(Daily profit) (Rs.)	0-100	100-200	200-300	300-400	400-500	500-600
पसल संख्या (No.of shops)	12	18	27	p	17	6

[4x5=20]

२१. एउटा बैंकले खाता P मा 10% प्रतिवर्ष अर्धवार्षिक चक्रीय ब्याजदर र खाता Q मा 12% प्रतिवर्ष वार्षिक चक्रीय ब्याजदर कायम गरेको छ। यदि तपाई 2 वर्षका लागि रु. 50,000 सो बैंकमा जम्मा गर्दे हुनुहुन्छ भने कुन खातामा जम्मा गर्नुहुन्छ र किन ? गणना गरी कारणसिहत उल्लेख गर्नुहोस्।

A bank has fixed the rate of interest 10% p.a. semi-annually compound interest in account P and 12% per annum annually compound interest in acount Q. If you are going to deposit Rs. 50,000 for 2 years in the same bank, in which acount will you deposit and why? Give your reason with calculation.

२२. एउटा पानी ट्याङ्की बेलनाकार र अर्धगोलाकार भाग मिलेर बनेको छ । सो ट्याङ्कीको पूरा उचाइ 24~m छ र आधारको क्षेत्रफल $616~m^2$ भए उक्त ट्याङ्कीमा प्रतिलिटर 65~ पैसाका दरले पानी भर्न जम्मा कित खर्च लाग्छ ? पत्ता लगाउनुहोस् ।

A water tank is formed with the combination of cylinder and hemisphere. The total height of the tank is 24 m and base area is 616 m². If the tank is filled with water at the rate of 65 paisa per litre, what is the total cost for the water? Find it.

२३. सरल गर्नुहोस् (Simplify):
$$\frac{\left(a^2 - \frac{1}{b^2}\right)^a \left(a - \frac{1}{b}\right)^{b-a}}{\left(b^2 - \frac{1}{a^2}\right)^b \left(b + \frac{1}{a}\right)^{a-b}}$$

२४. WXYZ एउटा चक्रीय चतुर्भुज हो । यदि ∠XWZ र ∠XYZ का अर्धकहरुले वृत्तलाई क्रमश: बिन्दुहरु A र B मा भेट्छन भने AB वृत्तको व्यास हो भनी प्रमाणित गर्नुहोस् । WXYZ is a cyclic quadrilateral. If the bisectors of ∠XWZ and ∠XYZ meet the circle at points A and B respectively, then prove that AB is the diameter of the circle.

माध्यमिक शिक्षा परीक्षा २०७४ (SEE 2018) उत्तरकुञ्जिका (Marking Scheme)

पूर्णाङ्क:- १००

विषय: अनिवार्य गणित

उत्तरपुस्तिका परीक्षण कुञ्जिका उत्तरपुस्तिका परीक्षणको निम्ति परीक्षकलाई सामान्य मार्गनिर्देशन हो। परीक्षकले उत्तरको शुद्धता, स्तरीयता, मौलिकता आदि हेरी आवश्यकता अनुसार विवेक प्रयोग गरी स्तर अनुसार सही, स्पष्ट, उपयुक्त, मापनीय र स्तरीय मूल्याङ्कन गर्नुपर्ने छ। सम्भव भएसम्म कुञ्जिकाले निर्देश गरेको परिधि र सीमाभित्र रही मूल्याङ्कन गर्नुपर्ने छ।

Note: Give the relevant mark(s) for other correct method.

	Note: Give the relevant mark(s) for other correct method.				
प्रश्न नं.	उत्तर	अंक			
	समूह "क"				
१ क	1. SP with VAT = $x - y + z$	1			
१ ख	I. T.S.A. of Sq. pyramid = $(2xy + x^2)$ Sq.cm	1			
२क	1. Order of $\sqrt[p]{x} = p$	1			
२ख	I. h denotes class interval.	1			
३ क	I. ΔABE= ½ □ABCD	1			
३ ख	$I. \qquad \angle PQR = \angle PSR.$	1			
	समूह "ख"	1			
४ क	1. \$ 550	1			
	II. NRS. 51860	1			
४ ख	1. $5408 = 5000(1 + \frac{R}{100})^2$	1			
	II. ∴ R = 4%	1			
५ क	I. 539 Litres $=\pi r^2 h$	1			
	$539000 \ cm^3 = \frac{22}{7} \times r^2.140 \ cm$				
	II. $r = 35 \text{ cm}$	1			
५ ख	I. $4\pi r^2 = 30184 \text{ cm}^2$	1			
	II. $r = 35$ cm	1			
		1			

	1	1 - 1	
५ ग	I.	$\frac{1}{3}\pi r^2 h = 512\pi \text{ cm}^3$	1
		4	
		$\frac{1}{3}\pi r^2 3r = 512\pi \text{ cm}^3$	
			1
	II.	r = 8 cm	1
६क	I.	$1^{st} \operatorname{Expn} = x (x^3 - 1)$	1
		$=x(x-1) (x^2+x+1)$	
		$2^{\text{nd}} \operatorname{Expn} = (x^2 + x + 1)$	
	II.	H.C.F. = $x^2 + x + 1$	1
	11.	$11.0.1 \cdot -\lambda + \lambda + 1$	
६ ख	I.	$15\sqrt[8]{2} - 12\sqrt[8]{2} + 4\sqrt[8]{2}$	1
			1
	II.	7₹2	1
७ क	I.	$p^{n}q^{m} = 100$	
9 47	1.		
		$10^{\text{mn}} \cdot 10^{\text{mn}} = 10^2$	1
	II.	mn = 1	1
			1
७ ख	I.	$\frac{1}{1} - \frac{s+f}{s+s+f}$	
		$\frac{1}{s-f} - \frac{1}{(s+f)(s-f)}$	_
		$\frac{e+f-e-f}{(e+f)(e-f)}$	1
		$\overline{(e+f)(e-f)}$	1
	11		
	II.	0	
७ ग	I.	$p^{5}-q^{5}+p^{5}+q^{5}$	1
		(p+q)(p-q)	
	II.	2p ³	4
	11.	$p^2 - q^2$	1
<u> </u>	I.	Area of rhombus PQRS = $\frac{1}{2}$ x10 x 8 cm ²	
~ ~ ~ ·	1.	$= 40 \text{ cm}^2$	A
			1
	II.	area of the $\Delta QRT = \frac{1}{2} \times 40 \text{ cm}^2$	1
		$= 20 \text{ cm}^2$	
८ ख	I.	$\angle RQT = 90^{\circ} - 65^{\circ} = 25^{\circ}$	1
	II.	$\angle QPT = \angle QRT = 65^{\circ}$ $\angle PGD = 90^{\circ}$	1
८ ग	III.	$\angle PGD = 90^{\circ}$ $\angle DPG = 45^{\circ}$	1 1
	IV.	∠DI (J = 43	1

९ क	I. Area of $\Delta XYZ = \frac{1}{2} \times 12 \times 15 \times \sin 30^{\circ}$	
	$= 45 \text{ cm}^2$	1
	II. Area of $\Delta WXY = 2$ area of ΔXYZ	
	=90 cm ²	1
९ ख	I. $\bar{x} = \frac{\sum fx}{\sum f}$	
	or, $5 = \frac{y}{10}$	1
	II. $P = 50$	1
१० क	I. $P(5) = \frac{4}{20}$; $P(7) = \frac{2}{20}$	1
	II. P (5 or 7) = $\frac{4}{20} + \frac{2}{20} = \frac{3}{10}$	1
१० ख	I. First draw with probabilities	1
	II. Second draw with probabilities	1
	$\frac{1}{2}$ R V $\frac{1}{2}$ V $\frac{1}{2}$ V $1R$ $1W$ $\frac{1}{2}$ W $\frac{1}{2}$ V W $\frac{1}{2}$ R	
	समूह 'ग'	
99	I. For correct Venn diagram	1
	$n(\cup) = 25000, \ n_o (A) = 12000, \ n_o (B) = 10000, \ n(A \cap B) = 1000$	1
	II. $n(\cup) = n_O(A) + n_O(B) + n(A \cap B) + x$	1
	= 12000+10000+10000 + x	
	x =25000 - 23000 = 2000	1

	III. n	$_{0}(A) + n_{0}(B) = 12000 + 10000 = 22000$	
	N.B.	: Give relevant marks for any other correct method.	1
92	I.	Let M.P. of Radio be Rs. x	
		SP after discount = $(100 - D)\% \times MP$	
		=0.9x	1
	II.	SP including VAT = $(100+V)\%$ x SP after discount	
		$= (100+13)\% \times 0.9x$	1
		= 1.017x	
	III.	By the question,	
		SP including VAT $-$ SP after discount $= 1170$	1
		1.017x - 0.9x = 1170	_
	IV.	MP of Radio(x) = Rs. 10000	
			1
93	I.	Let sides of triangular field = $6x$, $9x$ and $10x$ P = 6x + 9x + 10x Or, $2500m = 25x$	1
	II.	x = 100m Sides of triangular field:	
		a = 6x = 600m, $b = 9x = 900m$, $c = 10x = 1000m$	1
	III.	$S = \frac{a+b+c}{2} = \frac{600+900+1000}{2} = \frac{2500}{2} = 1250m$	1
	IV.	$A = \sqrt{S(s-a)(s-b)(s-c)}$	
		$= \sqrt{1250(1250 - 600)(1250 - 900)(1250 - 1000)}$	1
		$=266634.11 \text{ m}^2$	
98	I.	$1^{st} \exp = x^4 + x^3 - x^2 - x$	
		$= x(x+1)(x^2-1)$	1
		= x(x+1)(x+1)(x-1)	
	II.	$2^{nd} \exp = x^4 - x$	1
		$=x(x^3-1)$	_
		$= x(x-1)(x^2 + x + 1)$	
	III.	Third $\exp = 4x^2 - 4$	1
		$=4(x^2-1)$	1
		=4(x+1)(x-1)	

	IV. L.C. $F = H.C.F \times rer$	maining factors	1
	$= 4x (x+1)^2 (x-1)$	$(x^2 + x + 1)$	
੧ ሂ	I. Let digit of one's pla		
	digit of ten's place = ∴ required number =		
	In first condition x +		1
		10y + x - 72 = 10x + y or $y - x = 8$	1
	III. By solving equation,	*	1
	IV. ∴ required number =	= 10y + x = 91	1
१६	I. correct figure + give	en R P	Z 1
	To prove : Ar of △RXY	$=\frac{1}{2}(\square PXYZ)$	
	Construction: Draw PM.		4
	II. Ar. $(\Delta RXY) = \frac{1}{2}XY$	Y x PM \rightarrow Area of triangle = $\frac{1}{2}$ b x h (i)	1
	-	$x PM \rightarrow Area of Parallelogram = b x h (ii)$	1
	IV. Ar $(\Delta RXY) = \frac{1}{2} Ar (1)$	$\Box PXYZ) \rightarrow from (i) and ii)$	1
	_	or alternative method also	
৭৩	I. Construction of recta	angle A E D	1
	II. Construction of angl	le of triangle 6.1cm	1
	III. Construction of triar	ngle P 7.1 cm C 7.1 cm F	1
	IV. Conclusion		1
95	I. Correct figure		1
	II. Verification table		1+1
	III. Conclusion		1
१९	I. Correct figure and de	lescription	1
	II. In ⊥ [*] ΔAOB	$\uparrow \hat{\uparrow}$	
	. OA 60	62-2-601	1
	$\tan\theta = \frac{oA}{oB} = \frac{60}{60}$		1
	III. Or $\tan\theta = 1 = \tan 45$	120 B	1
	IV. $\theta = 45^{\circ}$		1
२०	Marks (x) No. of Stu	udents (f) c.f	
	0-100	12 12 18 30	

		200-300 27 57	
		300-400 p 57+p	
		400-500 17 74+p	1
		500-600 6 80+p	
	I.	Correct c.f table	1
	II.	$\therefore Q_3 = 390; Q_3 \text{ class} = 300 - 400$	1
	III.	$390-300 = \frac{\frac{5(80+p)}{4} - 57}{p} \times 100$	1
	IV.	18p = (3p + 12) x5 3p = 60 p = 20	
	I	समूह 'घ'	
२१	I.	$H.Y.C.I = P\left[\left(1 + \frac{R}{200}\right)^{2C} - 1\right]$	
		[, 2007]	
		$=50000\left[\left(1+\frac{10}{200}\right)^{2\times2}-1\right]$	1
	II.	= Rs. 10775.30	1
	III.	Y.C.I $= P\left[\left(1 + \frac{R}{100}\right)^{T} - 1\right]$	
		$=50000\left[\left(1+\frac{12}{100}\right)^2-1\right]$	1
	IV.	= Rs. 12720	1
	V.	Finding difference with logical reason.	1
२२	I.	Radius of tank $(r) = 14 \text{ m}$	1
	II.	Height of cylindrical part (h) = 10 m	1
	III.	Volume of $tank = Axh + \frac{2}{3} \pi R^{n/3}$	
		$=616 \times 10 + \frac{2}{3} \times \frac{22}{7} \times 14^{3}$	
		$= 11909.333 \text{ m}^3$	1
	IV.	Volume of water $(V) = 11909333L$	1
	V.	Total cost $(T) = Rs. 77,41,066.67$	1

२३	I.	$\frac{\left(a-\frac{a}{b}\right)^{a}\left(a+\frac{a}{b}\right)^{a}\left(a-\frac{a}{b}\right)^{b-a}}{\left(b-\frac{a}{a}\right)^{0}\left(b+\frac{a}{a}\right)^{0}\left(b+\frac{a}{a}\right)^{a-b}}$	1
	II.	$\frac{\left(\alpha - \frac{a}{D}\right)^{\alpha + D - \alpha} \left(\alpha + \frac{a}{D}\right)^{\alpha}}{\left(b - \frac{a}{\alpha}\right)^{0} \left(b + \frac{a}{\alpha}\right)^{\alpha}}$	
		$\frac{\left(a - \frac{1}{b}\right)^{b} \left(a + \frac{1}{b}\right)^{a}}{\left(b - \frac{1}{a}\right)^{b} \left(b + \frac{1}{a}\right)^{a}}$	1
	III.	$\left(\frac{\frac{ab-1}{b}}{\frac{ab-1}{a}}\right)^{b}\left(\frac{\frac{ab+1}{b}}{\frac{ab+1}{a}}\right)^{\alpha}$	1
	IV.	$\left(\frac{\alpha}{b}\right)^b \left(\frac{a}{b}\right)^{\alpha}$	1
	V.	$\left(\frac{\alpha}{b}\right)^{\alpha+b}$	1
२४	I.	Correct fig. with construction	1
	II.	$\angle AWZ = \frac{1}{2} \angle XWZ$ and $\angle BYZ = \frac{1}{2} \angle XYZ$	1
	III.	$\angle AYZ + \angle AWZ = 90^{\circ}$	1
	IV.	$\angle AYZ = \angle AWZ$	1
	V.	∴ $\angle AYB = 90^{\circ}$ & AB in the diameter.	1

SEE 2074 (2018) अनिवार्य गणित

नयाँ पाठ्यक्रम

दिइएका निर्देशनका आधारमा आफ्नै शैलीमा सिर्जनात्मक उत्तर दिन्होस् ।

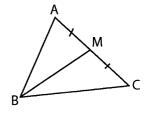
समय: ३ घन्टा

पूर्णाङ्क - १००

सबै प्रश्नहरूको उत्तर दिनुहोस् । Answer all the questions.

समूह 'क' (Group 'A')

[3x(1+1)=6]


- १. (क) कुनै सहरको हालको जनसंख्या P छ । यदि प्रत्येक वर्ष जनसंख्या R% ले वृद्धि हुन्छ भने T वर्षपछि त्यो सहरको जनसंख्या कित होला ? लेख्नुहोस् । The present population of a town is P. If the population increases by R% every year, what will be the population of the town after T years? Write it.
 - (ख) एउटा वर्ग आधार पिरामिडको आधारको भुजा P से.मी. र छड्के उचाइ q cm से.मी. भए सो पिरामिडको पूरा सतहको क्षेत्रफल कित हुन्छ ? लेख्नुहोस्।

 The length of a side of the square base of a pyramid is P cm and the slant height is q cm, what is the total surface area of the pyramid?

 Write it
- २. (क) $\sqrt[x]{p}$ मा सर्डको क्रम कित हुन्छ ? लेख्नुहोस् । Write down the order of surd in $\sqrt[x]{p}$.
 - (ख) यदि कुनै तथ्याङ्कको मध्यिका श्रेणीको तल्लो सीमा L, सो श्रेणीको बारम्बारता f, श्रेणीअन्तर i, बारम्बारताहरूको जोड N र मध्यिका श्रेणीभन्दा अधिल्लो श्रेणीको सञ्चित बारम्बारता c.f. छन् भने पहिलो चतुर्थाश पत्ता लगाउने सूत्र लेखनुहोस्।

 If the lower limit of the median class of any data is L, frequency of that class is f, class interval i, sum of the frequencies N and the cumulative frequency of pre-median class is c.f. then write the formula
- for finding the first quartile. ३. (क) दिइएको चित्रमा यदि AC को मध्यबिन्दु M हो भने ΔBMC र ΔABC को क्षेत्रफलबीचको सम्बन्ध लेख्नुहोस् ।

In the given figure, if M is the middle point of AC, then write the relation between the areas of ΔBMC and ΔABC .

(ख) दिइएको वृत्तमा जीवाहरु AB र MN बराबर छन् भने चापहरु AB र MN को सम्बन्ध के हुन्छ ? लेखनुहोस्। In the given circle, chords AB and MN are equal. What is the relation of arcs AB and MN? Write it.

समूह 'ख' (Group 'B') [4x(2+2)+3x(2+2+2)=34]

४. (क) यदि 176 डलर = 100 पाउन्ड र 1 पाउन्ड = ने.रु. 119 भए 132 डलरिसत कित नेपाली रुपैयाँ साद्न सिकन्छ ? पत्ता लगाउनुहोस्।

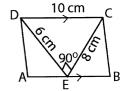
If 176 dollars = 100 pounds and 1 pound = NRs. 119, how much Nepali rupees can be exchanged with 132 dollars? Find it.

(2)

- (ख) एउटा सहरको हालको जनसंख्या 66,550 छ। यदि वार्षिक जनसंख्या वृद्धिदर 10% छ भने 3 वर्षपिहले त्यो सहरको जनसंख्या कित थियो ? पत्ता लगाउनुहोस्।

 The present population of a town is 66,550. If the annual population growth rate is 10%, what was the population of the town 3 years ago? Find it.
- ५. (क) एउटा बेलनाकार ट्याङ्कीमा 172.48 लिटर पानी अटाउँछ । यदि यसको उचाइ 0.7 मिटर भए आधारको अर्धव्यास पत्ता लगाउनुहोस् ।

A cylindrical tank contains 172.48 litres of water. If its height is 0.7 m then find the radius of the base.

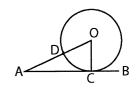

(ख) यदि एउटा गोलाको सतहको क्षेत्रफल 22176 वर्ग से.मी. भए यसको अर्धव्यास पत्ता लगाउन्होस्।

If the surface area of a sphere is 22176 sq. cm, then find its radius.

- (ग) यदि एउटा सोलीको उचाइ आधारको अर्धव्यासको चार गुणा र यसको आयतन 36π घन से.मी. भए सोलीको आधारको अर्धव्यास पत्ता लगाउनुहोस् ।
 - If the height of a cone is four times of the radius of the base and its volume is 36π cu. cm, then find the radius of the base of the cone.
- ६. (क) म.स. पत्ता लगाउनुहोस् (Find the H.C.F. of) : $p^5+p^2 \quad \text{and} \quad p^2-p+1$
 - (ख) सरल गर्नुहोस् (Simplify): $4\sqrt[3]{250} 8\sqrt[3]{128} + 4\sqrt[3]{54}$
- 9. (क) यदि $a = 5^x$, $b = 5^y \in a^y$. $b^x = 25$ भए प्रमाणित गर्नुहोस्: xy = 1. If $a = 5^x$, $b = 5^y$ and a^y . $b^x = 25$ then prove that: xy = 1.
 - (ख) सरल गर्नुहोस् (Simplify): $\frac{1}{m-n} \frac{m+n}{m^2-n^2}$.

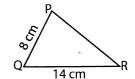
(ग) सरल गर्नुहोस् (Simplify) :
$$\frac{c^2 + cd + d^2}{c + d} + \frac{c^2 - cd + d^2}{c - d}$$
.

५. (क) चित्रमा ABCD एउटा समानान्तर चतुर्भुज हो । AB मा एउटा बिन्दु E छ । यदि DE = 6 cm, CE = 8 cm र ∠DEC = 90° भए समानान्तर चतुर्भुज ABCD को क्षेत्रफल निकाल्नुहोस् ।



In the figure, ABCD is a parallelogram. E is a E' point on AB. If DE = 6 cm, CE = 8 cm and \angle DEC = 90°, then find the area of parallelogram ABCD.

(ख) सँगैको चित्रमा O वृत्तको केन्द्रबिन्दु हो र यदि ∠DAC=25° भए ∠BDC र ∠BAC को मान पत्ता लगाउनुहोस्। In the adjoining figure, O is the centre of a circle. If ∠DAC = 25°, find the values of the ∠BDC and ∠BAC.



(ग) दिइएको चित्रमा केन्द्रबिन्दु O भएको वृत्तमा AB स्पर्श रेखा र C स्पर्शबिन्दु हो । यदि OC = 9 से.मी. र AC = 40 से.मी. भए AD को लम्बाइ पत्ता लगाउनुहोस् । In the given figure, AB is the tangent and C the point of contact of a circle having the centre O. If OC = 9 cm and AC = 40 cm find the length of AD.

९. (क) दिइएको चित्रमा ΔPQR को क्षेत्रफल $28\sqrt{3}$ वर्ग से.मी. छु । यदि PQ=8 से.मी. र QR=14 से.मी.भए $\angle PQR$ को मान पत्ता लगाउनुहोस् ।

the value of median.

- In the given figure, the area of $\triangle PQR$ is $28\sqrt{3}$ square cm. If PQ = 8 cm and QR = 14 cm, then find the value of the $\angle PQR$.
- (ख) एउटा वर्गीकृत तथ्याङ्कमा, मध्यिका श्रेणीको तल्लो सीमा =400, वर्गान्तर=100, जम्मा बारम्बारता =44, मध्यिका श्रेणीको अघिल्लो श्रेणीको सञ्चित बारम्बारता =8 र मध्यिका श्रेणीको बारम्बारता =20 भए मध्यिकाको मान पत्ता लगाउनुहोस् । In a continuous data, lower limit of median class =400, width of the class interval =100, total frequency =44, cumulative frequency of pre-median class =8 and frequency of the median class =20. Find

(क) 1 देखि 30 सम्म लेखिएका सङ्ख्यापत्तीहरुबाट नहेरीकन एउटा पत्ती थुत्दा सो पत्ती 5 अथवा
 7 ले नि:शेष भाग जाने सङ्ख्या पर्ने सम्भाव्यता पत्ता लगाउनुहोस् ।

A number card is drawn randomly from a group of number card numbered from 1 to 30. Find the probability of getting a card which is exactly divisible by 5 or 7.

(ख) एउटा बाकसमा 20 ओटा उस्तै र उत्रै खेलौनाहरु छन्। तिनीहरुमध्ये 12 ओटा रातो रङका र बाँकी निलो रङका छन्। यदि नहेरीकन पालैपालो दुईओटा खेलौनाहरु निकाल्दा (पुन: नराखी) बन्ने सबै परिणामहरुको सम्भाव्यतालाई वृक्षचित्रमा देखाउनुहोस्।

Thre are 20 toys of same shape and size in a box. Out of them 12 are red coloured and remaining blue coloured. If two toys are drawn randomly in succession (without replacement), show the probabilities of all possible outcomes in a tree-diagram.

समूह 'ग' (Group 'C')

[10x4=40]

- 99. एउटा नगरपालिकाको चुनावमा X र Y दुई उम्मेदवारहरु मेयर पदका लागि उठेछन् र त्यहाँ मतदाता सूचीमा 35000 जना रहेछन्। मतदाताले एक जनालाई मात्रै मत खसाल्नुपर्ने थियो। 18000 जनाले X लाई, त्यस्तै 14000 जनाले Y लाई र 2000 जनाले दुवैलाई पनि मत दिएछन्। In an election of a municipality two candidates X and Y stood for the post of Mayor and 35000 people were in the voter list. Voters were supposed to cast the vote for a single candidate. 18000 people cast vote for X, 14000 people cast for Y and 2000 people cast vote even for both.
 - (i) यी जानकारीलाई एउटा भेनचित्रमा प्रस्तुत गर्नुहोस्। Show these information in a Venn-diagram.
 - (ii) कित जनाले मत खसालेनन् ? पत्ता लगाउनुहोस्। How many people didn't cast vote? Find it.
 - (iii) कित मत सदर भयो ? पत्ता लगाउनुहोस् How many votes were valid? Find it.
- 9२. एउटा क्यामेराको अंकित मूल्यमा 15% छुट दिई 15% मूल्य अभिवृद्धि कर लगाएर बेचियो। यदि मूल्य अभिवृद्धि करसिहतको मूल्य र छुटपिछको मूल्यबीचको फरक रु.1275 भए सो क्यामेराको अंकित मूल्य पत्ता लगाउनुहोस्।

After allowing 15% discount on the marked price of a Camera, 15% VAT was levied and sold it. If the difference between the selling price with VAT and selling price after discount is Rs. 1275, find the marked price of that Camera.

- (5)
- 9३. एउटा त्रिभुजाकार जग्गाका किनाराहरु 4:5:6 को अनुपातमा छन्। यदि यसको परिमिति 1500 मिटर भए, उक्त जग्गाको क्षेत्रफल कित हुन्छ ? पत्ता लगाउनुहोस्।

The sides of a triangular field are in the ratio of 4:5:6. If its perimeter is 1500 m, what is the area of that field? Find it.

- १४. ल.स. निकाल्नुहोस् (Find the L.C.M of): $m^4 + m^3 m^2 m$, $m^4 m$ and $4m^2 4$
- १५. दुई अङ्कले बनेको एउटा संङ्ख्यामा अङ्कहरुको योगफल 6 छ । यदि सो सङ्ख्याबाट 36 घटाइयो भने अङ्कहरुको स्थान परिवर्तन हुन्छ । सुरुको सङ्ख्या पत्ता लगाउनुहोस् ।

 The sum of the digits in a two digits number is 6. If 36 is subtracted from the number the places of the digits are interchanged. Find the initial number.
- 9६. एउटै आधार MN र उही समानान्तर रेखाहरु MN र RO बीच बनेका समानान्तर चतुर्भुजहरु RMNQ र PMNO को क्षेत्रफल बराबर हुन्छ भनी प्रमाणित गर्नुहोस्।
 Prove that the parallelograms RMNQ and PMNO standing on the same base MN and between the same parallel lines MN and RO have the same area.
- 9७. लम्बाइ 6.2 से.मी. र चौडाइ 5.2 से.मी. भएको आयतको क्षेत्रफलसँग बराबर हुने गरी एउटा कोण $60^{\rm o}$ भएको त्रिभुजको रचना गर्नुहोस् ।
 - Construct a rectangle with length 6.2 cm and breadth 5.2 cm. Also construct a triangle having one angle 60° and equal in the area of the rectangle.
- १८. चक्रीय चतुर्भुज BCDE का सम्मुख कोणहरुबीचको सम्बन्ध प्रयोगद्वारा खोजी गर्नुहोस्। (कम्तीमा 3 से.मी. अर्धव्यास भएका दुईओटा वृत्तहरु आवश्यक छन्।)
 - Explore experimentally the relationship between opposite angles of a cyclic quadrilateral BCDE. (Two circles having radii at least 3 cm are necessary)
- 99. एउटा वृत्ताकार पोखरीको व्यास 90 मिटर छ र यसको बीचमा एउटा खम्बा गाडिएको छ । उक्त खम्बाको उचाइ 48 मिटर छ र पोखरीको गिहराइ 3 मिटर छ भने परिधिको कुनै एक बिन्दुबाट उक्त खम्बाको टुप्पोको उन्नतांश कोण पत्ता लगाउन्होस् ।
 - The diameter of a circular pond is 90 meter and a pillar is fixed at the centre of pond. The height of the pole is 48 meter and the pond is 3 meter deep then, find the angle of elevation of the top of pole from a point of the circumference.

२०. यदि तल दिइएको आँकडाको तेस्रो चतुर्थांश (Q_3) 32 भए x को मान पत्ता लगाउनुहोस्। Find the value of x if the third quartile (Q_3) of the data given below is 32.

प्राप्ताङ्क (Marks obtained)	0-10	10-20	20-30	30-40	40-50
विद्यार्थी संख्या (No.of Students)	3	7	10	x	3

[4x5=20]

२१. एउटा बैंकले खाता M मा 5% प्रतिवर्ष अर्धवार्षिक चक्रीय ब्याजदर र खाता N मा 6% प्रतिवर्ष वार्षिक चक्रीय ब्याजदर कायम गरेको छ । यदि तपाई 2 वर्षका लागि रु. 12,500 सो बैंकमा जम्मा गर्दे हुनुहुन्छ भने कुन खातामा जम्मा गर्नुहुन्छ र किन ? हिसाब गरी कारणसहित उल्लेख गर्नहोस् ।

A bank has fixed the rate of interest 5% p.a. semi-annually compound interest in account M and 6% p.a. annually compound interest in account N. If you are going to deposit Rs. 12,500 for 2 years in the same bank, in which account will you deposit and why? Give your logic with calculation.

२२. एउटा पानी ट्याङ्की बेलनाकार र अर्धगोलाकार भाग मिलेर बनेको छ । उक्त ट्याङ्कीको पूरा उचाइ 14 मिटर छ र आधारको क्षेत्रफल 38.5 वर्गमिटर छ भने उक्त ट्याङ्कीमा प्रतिलिटर 24 पैसाका दरले पानी भर्ने हो भने जम्मा कित खर्च लाग्ला ? पत्ता लगाउनुहोस् । A water tank is formed with the combination of cylinder and hemisphere. The total height of the tank is 14 m and base area is 38.5 squ m. If the tank is filled with water at the rate of 24 paisa per litre, what is the total cost to fill the water? Find it.

२३. सरल गर्नुहोस् (Simplify):
$$\frac{\left(d^2 - \frac{1}{e^2}\right)^d \left(d - \frac{1}{e}\right)^{e-d}}{\left(e^2 - \frac{1}{d^2}\right)^e \left(e + \frac{1}{d}\right)^{d-e}}$$

२४. WXYZ एउटा चक्रीय चतुर्भुज हो । यदि ∠XWZ र ∠XYZ का अर्धकहरुले वृत्तलाई क्रमश: बिन्दुहरु P र Q मा भेट्छन् भने PQ वृत्तको व्यास हो भनी प्रमाणित गर्नुहोस् । WXYZ is a cyclic quadrilateral. If the bisectors of ∠XWZ and ∠XYZ meet the circle at the points P and Q respectively, then prove that PQ is the diameter of the circle.

माध्यमिक शिक्षा परीक्षा २०७४ (SEE 2018) उत्तरकुञ्जिका (Marking Scheme)

विषय: अनिवार्य गणित

पूर्णाङ्क:- १००

उत्तरपुस्तिका परीक्षण कुञ्जिका उत्तरपुस्तिका परीक्षणको निम्ति परीक्षकलाई सामान्य मार्गनिर्देशन हो । परीक्षकले उत्तरको शुद्धता, स्तरीयता, मौलिकता आदि हेरी आवश्यकता अनुसार विवेक प्रयोग गरी स्तर अनुसार सही, स्पष्ट, उपयुक्त, मापनीय र स्तरीय मूल्याङ्कन गर्नुपर्ने छ । सम्भव भएसम्म कुञ्जिकाले निर्देश गरेको परिधि र सीमाभित्र रही मूल्याङ्कन गर्नुपर्ने छ ।

Note: Give the relevant mark(s) for other correct method.

प्र. नं.	उत्तर	अंक
	समूह "क"	
१ क	$P_T = P \left(1 + \frac{R}{100} \right)^T$	1
१ ख	I. T.S.A. of Sq. pyramid = $(p^2 + 2pq)$ sq.cm	1
२ क	I. Order of $\sqrt[n]{p}$ is x	1
२ख	$I. M_d = L + \frac{\binom{N}{z} - c_i f}{f} \times i$	1
३ क	I. $\Delta BMC = \frac{1}{2} \Delta ABC$	1
३ ख	$I. \qquad \text{Arc AB} = \text{arc MN}$	1
	समूह "ख"	1
४ क	I. $176 \times 1 \times x = 132 \times 119 \times 100$	1
	II. $x = Rs. 8925$	1
४ ख	I. $66550 = p(1 + \frac{10}{100})^3$	1
	II. $p = 50000$	1
५ क	I. $172.48 \text{ Litres} = \pi r^2 h$	
	$172480 \ cm^3 = \frac{22}{7} \times r^2 \times 70 \ cm$	1
	II. $r = 28 \text{ cm}$	1
५ ख	I. $4\pi r^2 = 22176 \text{ cm}^2$	1
	II. $r = 42 \text{ cm}$	1
५ ग	I. $\frac{1}{3}\pi r^2 h = 36\pi \text{ cm}^3$	
	$\frac{1}{3}\pi r^2 4r = 36\pi \text{ cm}^3$	1
	3	1

	II.	r = 3 cm	
६क	I.	$1^{st} Expn = p^2 (p^3 + 1)$	
		$= p^2 (p+1) (p^2 - p + 1)$	1
		$2^{\text{nd}} \operatorname{Expn} = p^2 - p + 1$	
	II.	H.C.F. = $p^2 - p + 1$	1
६ख	I.	$4 \times 5\sqrt[8]{2} - 8 \times 4\sqrt[8]{2} + 4 \times 3\sqrt[8]{2}$	
		$(20-32+12)\sqrt[9]{2}$	1
	II.	0	1
७ क	I.	$a^{y}b^{x}=25$	
		$5^{xy}.5^{xy} = 5^2$	1
	II.	xy = 1	1
७ ख	I.	$\frac{1}{m-n} - \frac{m+n}{(m+n)(m-n)}$	
		m+n-m-n	1
		(m+n)(m-n)	
	II.	0	1
७ ग	I.	$\frac{c^{8}-d^{8}+c^{8}+d^{8}}{(c+d)(c-d)}$	1
	II.	$\frac{2\sigma^8}{\sigma^2-d^2}$	1
८ क	I.	Area of $\triangle DEC = \frac{1}{2} \times 6 \times 8 \text{ cm}^2 = 24 \text{ cm}^2$	1
	II.	area of the $\Box ABCD = 48 \text{ cm}^2$	1
८ ख	I.	$\angle BDC = 90^{\circ} - 25^{\circ} = 65^{\circ}$	1
	II.	$\angle BAC = \angle BDC = 65^{\circ}$	1
८ ग	III.	$OA = \sqrt{AC^2 + OC^2} = \sqrt{1600 + 81} = \sqrt{1681} = 41 cm$	1
	IV.	(41 - 9) cm = 32 cm	1
९ क	I.	$28\sqrt{3} = \frac{1}{2} \times 8 \times 14sin \angle PQR$	1
		$\sin \angle PQR = \frac{\sqrt{3}}{2}$	
	II.	$\angle PQR=60^0$	1
	11.		
९ ख	T	$M_{\text{odiso}} = 400 \text{ J} \left(\frac{44}{2} - 8 \right) \times 100$	1
	I.	$Median = 400 + \left(\frac{\frac{44}{2} - 8}{20}\right) \times 100$	1
0	II.	Median = $400+70=470$	
90	I.	Total no of cards $N(s) = 30$ Let A and B be the events of the number cards divisible 5 and 7 respectively.	
	1	200 11 and 2 00 the creates of the hamber earns artistote 5 and 7 respectively.	

क	$A = \{5, 10, 15, 2025, 30\}, n(A) = 6$	1
	$B = \{7, 14, 21, 28\}, n(B) = 4$	
	II. $P(A \cup B) = \frac{6}{30} + \frac{4}{30} = \frac{1}{3}$	1
१० ख	I. First draw with probabilities	1
	II. Second draw with probabilities	1
	P(R)=11/19	
	P(R)=3/5 P(W)=8/19	
	12R	
	P(R)=12/19	
	P(Y)=2/5	
	P(W)=7/9	
	समूह 'ग'	
99	I. $n(\cup) = 35000$, $n_o(X) = 18000$, $n_o(Y) = 14000$,	1
	$n(X \cap Y) = 2000$	1
	II. $n(\cup) = n_o(X) + n_o(Y) + n(X \cap Y) + x$	
	$= 18000 + 14000 + 2000 + x \qquad \left \left(18000 \left(\begin{array}{c} 2000 \\ 0 \end{array} \right) 14000 \right) \right $	1
	x = 35000 - 34000 = 1000	
	III . $n_o(X) + n_o(Y) = 18000 + 14000 = 32000$	1
	N.B.: Give relevant marks for any other correct method.	
9२	I. Let M.P. of Camera be Rs. <i>x</i>	
	SP after discount = $(100 - D)\% \times MP$	
	$= (100-15)\% \times x$	1
	= 0.85x	
	II. SP including VAT = $(100+V)\%$ x SP after discount	1
	$= (100+15)\% \times 0.85x$	
	=0.9775x	
	III. By the question,	
-		-

	SP including VAT – SP after discount = 1275	1
	0.9775x - 0.85x = 1275	
	IV. MP of Camera(x) = Rs. 10,000	
		1
9 ३	I. Let sides of triangular field = $4x$, $5x$ and $6x$	
14	P = 4x + 5x + 6x	
	Or, 1500m = 15x	1
	x = 100 m	
	II. Sides of triangular field:	
	a = $4x = 400$ m, b = $5x = 500$ m, c = $6x = 600$ m	1
		1
	III. $S = \frac{a+b+c}{2} = \frac{400m+500m+6000m}{2} = 750m$	
	IV. $A = \sqrt{S(s-a)(s-b)(s-c)}$	1
	$= \sqrt{750(750 - 400)(750 - 500)(750 - 600)}$	
	$= 99215.67 \text{ m}^2$	
१४	I. $1^{st} \exp = m^4 + m^3 - m^2 - m$	
	$= m(m+1) (m^2-1)$	1
	= m(m+1) (m+1) (m-1)	
	II. $2^{nd} \exp = m^4 - m$	
	$= m(m^3 - 1)$	1
	$= m(m-1) (m^2 + m + 1)$	
	III. Third $\exp = 4m^2 - 4$)	
	$=4(m^2-1)$	1
	=4(m+1)(m-1)	1
	IV. L.C. $F = H.C.F \times F$ remaining factors	
	$= 4m (m+1)^2 (m-1) (m^2 + m + 1)$	1
9 ¥	I. Let digit of one's place = x	
	digit of ten's place = y	1
	$\therefore \text{required number} = 10y + x$	
	In first condition $x + y = 6$	1
	II. In second condition $10y + x - 36 = 10x + y$ or $y - x = 4$	1
	III. By solving equation, $x = 1$, $y = 5$	
	IV : Required number = $10y + x = 51$	

I. Correct figure + given+	, T 0	
To prove : Area (\square RMNQ) = Area (\square PMNO)		1
Construction: Draw TN⊥MN	N	
II. Ar. (\square RMNO)= MN xTN \rightarrow Area of Parallelogram = b x h (i)	1
III. Ar.(\square PMNO) = MN x TN \rightarrow Area of Parallelogram = b x h	(ii)	1
IV Area (\square RMNO) = Area (\square PMNO) \rightarrow from (i) and (ii)		1
Note: Give full marks for alternative method.		
I. Construction of rectangle	1	
II. Construction of angle of triangle 55	1	
III. Construction of triangle $\frac{1}{3}$ $\frac{1}{60}$	1	
IV. Conclusion. B 6.2 cm C 6.2 cm	1	
I. For correct figure	1	-
II. For verification table	1+1	
III. For correct conclusion	1	
I. Correct figure and description	1	-
II. In rt.angle ΔΑΟΒ		
$\tan\theta = \frac{OA}{OB} = \frac{45}{45}$	1	
III Or $\tan \theta = 1 = \tan 45^{\circ}$	1	
\ 90m /	1	
Marks (x) No. of Students (f) c.f		
0-10 3 3		
10-20 7 10		
20-30 10 20	1	
30-40 x 20+x	1	
40-50 3 23+x	1	
I. Correct c.f. table	1	
II. $\therefore Q_3 = 32$; Q_3 class = 30 - 40		
III. $32 = 30 + \frac{\frac{8(28+3)}{4} - 20}{8} \times 10$		
IV. $11x = 55$		
x = 5		
समूह 'घ'	1	
	To prove : Area ($\square RMNQ$) = Area ($\square PMNO$) Construction: Draw TN $\bot MN$ II. Ar. ($\square RMNO$) = MN xTN \rightarrow Area of Parallelogram = b x h (III. Ar. ($\square RMNO$) = MN xTN \rightarrow Area of Parallelogram = b x h (IV. Area ($\square RMNO$) = Area ($\square PMNO$) \rightarrow from (i) and (ii) Note: Give full marks for alternative method. I. Construction of rectangle II. Construction of angle of triangle III. Construction of triangle III. For correct figure III. For correct figure III. For verification table III. For correct conclusion I. Correct figure and description II. In rt.angle $\triangle AOB$ $tan\theta = \frac{OA}{OB} = \frac{45}{45}$ III. Or $tan\theta = 1 = tan 45^{\circ}$ IV. $\theta = 45^{\circ}$ Marks (x) No. of Students (f) c.f $tan\theta = \frac{OA}{OB} = \frac{45}{45}$ III. Or $tan\theta = \frac{OA}{OB} = \frac{45}{45}$ III. Or $tan\theta = \frac{OA}{OB} = \frac{45}{45}$ III. Or $tan\theta = \frac{OA}{OB} = \frac{45}{45}$ III. Correct c.f. table II. $\therefore Q_3 = 32; Q_3 \text{ class} = 30 - 40$ III. $32 = 30 + \frac{40}{A} = 4$	To prove : Area ($\square RMNQ$) = Area ($\square PMNO$) Construction: Draw TN $\perp MN$ II. Ar. ($\square RMNO$)= MN xTN \rightarrow Area of Parallelogram = b x h (i) III. Ar. ($\square PMNO$) = MN xTN \rightarrow Area of Parallelogram = b x h (ii) IV Area ($\square RMNO$) = Area ($\square PMNO$) \rightarrow from (i) and (ii) Note: Give full marks for alternative method. I. Construction of rectangle III. Construction of triangle IV. Conclusion. I. For correct figure II. For verification table III. For correct conclusion I. Correct figure and description II. In rt.angle $\triangle AOB$ $\tan \theta = \frac{OA}{oB} = \frac{45}{45}$ III. Or $\tan \theta = 1 = \tan 45^{\circ}$ IV. $\theta = 45^{\circ}$ IV. $\theta = 45^{\circ}$ IV. $\theta = 45^{\circ}$ IV. $\theta = 45^{\circ}$ III. Correct c.f. table II. Correct c.f. table II. Correct c.f. table III. $20 = 32$; 23 ; 23 ; class = $30 - 40$ III. $32 = 30 + \frac{4}{x} - 20 \times 10$ IV. $11x = 55$ $x = 5$

20		[/ B \2T]	
२१	I.	$H.Y.C.I = P\left[\left(1 + \frac{R}{200}\right)^{2T} - 1\right]$	
		$= 12500 \left[\left(1 + \frac{5}{200} \right)^{2 \times 2} - 1 \right]$	1
	II.	= Rs. 1297.66	1
	III.	Y.C.I = $P\left[\left(1 + \frac{R}{100}\right)^T - 1\right]$	
		$= 12500 \left[\left(1 + \frac{6}{100} \right)^2 - 1 \right]$	1 1
	IV.	= Rs. 1545	1
	V.	Finding difference of C.I. with logical reason.	
२२	I.	Radius of tank $(r) = 3.5 \text{ m}$	1
	II.	Height of cylindrical part (h) = 10.5 m	1
	III.	Volume of tank = $Axh + \frac{2}{3}m^3$	
		$= 38.5 \times 10.5 + \frac{2}{3} \times \frac{22}{7} \times 42.875$	1
		$= 494.08 \text{ m}^3$	1
	IV.	Volume of water (V) = $494080 l$	1
	V.	Total cost $(T) = Rs. 118579.20$	_
२३	I.	$\frac{\left(a-\frac{1}{e}\right)^{d}\left(a+\frac{1}{e}\right)^{d}\left(a+\frac{1}{e}\right)^{e-d}}{\left(e-\frac{1}{d}\right)^{e}\left(e+\frac{1}{d}\right)^{e}\left(e+\frac{1}{d}\right)^{a-e}}$	1
		5 60 5 60 5 60	1
	II.	$\frac{\left(d-\frac{1}{e}\right)^{e}\left(a+\frac{1}{e}\right)^{a}}{\left(e-\frac{1}{a}\right)^{e}\left(e+\frac{1}{a}\right)^{a}}$	
		de^{-1} b de^{+1} a	1
	III.	$\left(\frac{\frac{de-1}{e}}{\frac{de-1}{d}}\right)^{b} \left(\frac{\frac{de+1}{e}}{\frac{ed-1}{d}}\right)^{a}$	1
	IV.	$\left(\frac{d}{\varepsilon}\right)^{\varepsilon} \left(\frac{d}{\varepsilon}\right)^{d}$	1
	V.	$\left(\frac{d}{\epsilon}\right)^{s+d}$	
28	I.	Correct fig. with construction	1
70	1.	correcting, with constitution	Ι Τ
	II.	$\angle PWZ = \frac{1}{2} \angle XWZ$ and $\angle QYZ = \frac{1}{2} \angle XYZ$	1
	III.	$\angle PWZ + \angle QYZ = 90^{\circ}$	1
	IV.	$\angle PYZ = \angle PWZ$	1
	V.	∴ $\angle PYQ = 90^{\circ}$ & PQ in the diameter	1
		Υ '	

RE-109'DC'

SEE 2074 (2018) अनिवार्य गणित नयाँ पाठ्यक्रम

दिइएका निर्देशनका आधारमा आफ्नै शैलीमा सिर्जनात्मक उत्तर दिन्होस् ।

समय: ३ घन्टा

पूर्णाङ्क - १००

सबै प्रश्नहरूको उत्तर दिनुहोस् । Answer all the questions.

समूह 'क' (Group 'A')

[3x(1+1)=6]

9. (क) कुनै सामानको अंकित मूल्य रु. x छ। यदि यसमा रु. y छुट दिइयो भने छुट प्रतिशत कित हन्छ ? लेखन्होस् ।

The marked price of an article is Rs. x. If a discount of Rs. y is allowed on it, what is the discount percent? Write it.

(ख) आधार भुजा a cm र छड्के उचाइ b cm भएको वर्ग आधार पिरामिडको पूरा सतहको क्षेत्रफल कति हुन्छ ? लेखनुहोस् ।

What is the total surface are of a square based pyramid having base side a cm and slant height b cm? Write it.

२. (क) $4\sqrt{x}$ मा सर्डको क्रम लेख्नुहोस् ।

Write down the order of surd in $\sqrt[4]{x}$.

(ख) यदि कुनै तथ्याङ्कको पहिलो चतुर्थांश पर्ने श्रेणीको तल्लो सीमा L, सो श्रेणीको बारम्बारता f, श्रेणी अन्तर i, बारम्बारताको जोड N र पहिलो चतुर्थांश श्रेणीभन्दा अघिल्लो श्रेणीको सञ्चित बारम्बारता c.f. छन् भने पहिलो चतुर्थांश पत्ता लगाउने सूत्र लेखन्होस्।

If the lower limit of the first quartile class is L, frequency of that class is f, class interval i, sum of the frequencies N and the cumulative frequency of preceding class is c.f., then write the formula for finding the first quartile.

३. (क) एउटै आधार QR र उही समानान्तर रेखाहरू QR र PS बीच रहेका त्रिभुजहरू PQR र SQR को क्षेत्रफलबीच के सम्बन्ध छ ? लेखन्होस् ।

What is the relation between the areas of triangle PQR and SQR standing on the same base QR and between the same parallel lines QR and PS? Write it.

(ख) दिइएको चित्रमा O वृत्तको केन्द्रबिन्दु हो भने ∠PQT सँग बराबर हुने कोण कुन हो ? लेख्नुहोस्।

In the given circle, O is the centre of circle. Which angle is equal to $\angle PQT$? Write it.

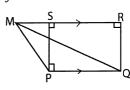
समूह 'ख' (Group 'B') [4x(2+2)+3x(2+2+2)=34]

- ४. (क) अमेरिकी डलर 1= ने रु. 105 दिइएको छ। यदि यो दरमा नेपाली मुद्रा 10% ले अवमूल्यन भयो भने नेपाली रु. 173250 सित कित अमेरिकी डलर साट्न सिकन्छ ? निकाल्नुहोस्। It is given that 1 American dollar = NRs. 105. If the Nepali currency is devaluated by 10% at this rate, how many American dollars can be exchanged with NRs. 173,250? Find it.
 - (ख) वि.सं. 2072 को सुरुमा एउटा सहरको जनसङ्ख्या 50,000 थियो। यदि वार्षिक जनसङ्ख्या बृद्धिदर 10% छ भने वि.सं. 2074 को अन्तमा त्यो सहरको जनसङ्ख्या कित होला ? पत्ता लगाउन्होस्।

In the beginning of 2072 B.S., the population of a town was 50,000. If the annual population growth rate is 10%, what will be the population of the town at the end of 2074 B.S? Find it.

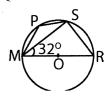
- ५. (क) एउटा बेलनाकार पानी ट्याङ्कीको क्षमता 673.75 लिटर छ। यदि यसको उचाइ 1.75 मिटर भए आधारको अर्धव्यास पत्ता लगाउनुहोस्।
 The capacity of a cylindrical water tank is 673.75 litres. If its height is
 - 1.75 meter, then find the radius of the base.
 (ख) यदि एउटा अर्धगोलाको पूरा सतहको क्षेत्रफल 1848 वर्ग से.मी. भए यसको अर्धव्यास पत्ता लगाउनहोस।

If the total surface area of a hemi-sphere is 1848 square cm, then find its radius.

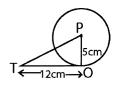

- (ग) यदि एउटा सोलीको उचाइ आधारको अर्धब्यासको तीन गुणा र यसको आयतन 1331π घन से.मी. भए सोलीको आधारको अर्धव्यास पत्ता लगाउनुहोस् । If the height of a cone is three times the radius of the base and its volume is 1331π cubic cm then find the radius of the base of the cone.
- ६. (क) म.स. पत्ता लगाउनुहोस् (Find the H.C.F. of) : $b^2 b + 1$ and $b^4 + b$
- (ख) हल गर्नुहोस् (Solve): $\sqrt{4x^2-4} = 2x-2$
- 9. (क) यदि $a = 4^x$, $b = 4^y$ र a^y . $b^x = 16$ भए प्रमाणित गर्नुहोस्: xy = 1. If $a = 4^x$, $b = 4^y$ and a^y . $b^x = 16$ then prove that: xy = 1.

क्रमशः

(ख) सरल गर्नुहोस् (Simplify):
$$\frac{1}{a-b} - \frac{2b}{a^2 - b^2}$$
.

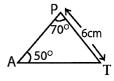

(ग) सरल गर्नुहोस् (Simplify) :
$$\frac{e^2 + ef + f^2}{e + f} + \frac{e^2 - ef + f^2}{e - f}$$
.

द. (a) चित्रमा PQRS एउटा आयत हो, जहाँ PQ = 3PS = 12 से.मी. छ। रेखा RS लाई बिन्दु M सम्म लम्ब्याइएको छ। ΔPQM को क्षेत्रफल कित हुन्छ? पत्ता लगाउनुहोस्।



In the figure, PQRS is a rectangle, in which PQ = 3 PS = 12 cm. RS is extended up to the point M, what is the area of Δ PQM? Find it.

(ख) सँगैको चित्रमा O वृत्तको केन्द्रबिन्दु हो। यदि \angle SMR=32° भए \angle SRM र \angle MPS को नाप पत्ता लगाउनुहोस्। In the adjoining figure, O is the centre of a circle. If \angle SMR = 32°, find the values of the \angle SRM and \angle MPS.



(ग) चित्रमा P वृत्तको केन्द्र र TO स्पर्शरेखा छ। यदि TO = 12 से.मी. र PO = 5 से.मी. भए PT को लम्बाइ कित हुन्छ ? पत्ता लगाउनुहोस्।
In the figure, P is centre of circle and TO is tangent to the circle. If TO = 12 cm and PO = 5 cm, then what is the length of PT? Find it.

९. (क) दिइएको ΔTAP मा $\angle TAP = 50^{\circ}$, $\angle TPA = 70^{\circ}$, $TP = 6 \text{ cm} \text{ } \Delta TAP$ को क्षेत्रफल 18 वर्ग से.मी. भए TA को लम्बाइ पत्ता लगाउनुहोस्।

In the given ΔTAP , $\angle TAP = 50^{\circ}$, $\angle TPA = 70^{\circ}$,

TP = 6 cm and area of Δ TAP = 18 sq.cm, find the length of TA.

(ख) एउटा निरन्तर श्रेणीमा बारम्बरता र मध्यमानको गुणनफलको योग $(\Sigma fx) = 460 + 23a$ छ । यदि बारम्बारताको योगफल $(\Sigma f) = 20 + a$ भए सो श्रेणीको मध्यक (x) को मान निकालनुहोस् ।

In a continuous series, the sum of the product of the frequencies and mid-values (Σfx) = 460 +23a. If the sum of the frequencies (Σf) = 20+a, find the value of the mean (x) of the series.

- १०. (क) एउटा निष्पक्ष सिक्का र एउटा निष्पक्ष डाइलाई एकैपटक उफारियो। सिक्कामा टाउको र डाइसमा 5 आउने सम्भाव्यता कित हुन्छ ? पत्ता लगाउनुहोस्।
 A fair coin is tossed and at the same time a fair die is rolled. What is
 - A fair coin is tossed and at the same time a fair die is rolled. What is the probability of getting head in coin and 5 in die? Find it.
 - (ख) एउटा भोलामा 8 ओटा हरिया र 10 ओटा पहेँला उत्रै र उस्तै कागतीहरु छन्। उक्त भोलाबाट दुईओटा कागतीहरु एकपछि अर्को पुन: नराखी भिक्दा आउने सबै परिणामहरुको सम्भाव्यतालाई वृक्षचित्रमा देखाउनुहोस्।

A bag contains 8 green and 10 yellow lemons of same size and shape. Two lemons are drawn randomly in succession without replacement. Show the probabilities of all possible outcomes in a tree diagram.

समूह 'ग' (Group 'C') [10x4=40]

- 99. एउटा नगरपालिकाको चुनावमा P र Q दुई उम्मेदवारहरु मेयर पदका लागि उठेछन् र त्यहाँ मतदातको सूचीमा 40000 जना रहेछन्। मतदाताले एक जनालाई मात्रै भोट खसाल्नुपर्ने थियो। 20000 जनाले P लाई, त्यस्तै 15000 जनाले Q लाई र 3000 जनाले दुवैलाई पिन मत दिएछन्। In an election of a municipality two candidates P and Q stood for the post of Mayor and 40000 people were in the voter list. Voters were supposed to cast the vote for a single candidate. 20000 people cast vote for P, 15000 people cast for Q and 3000 people cast vote even for both.
 - (i) यी जानकारीलाई एउटा भेनचित्रमा प्रस्तृत गर्नुहोस् ।

Show these information in a Venn-diagram.

(ii) कित जनाले भोट खसालेनन् ? पत्ता लगाउनुहोस् ।

How many people didn't cast vote? Find it.

(iii) कित भोट सदर भयो ? पत्ता लगाउनुहोस्।

How many votes were valid? Find it.

१२. एउटा मोबाइलको अंकित मूल्यमा 20% छुट दिई 15% मूल्य अभिवृद्धि कर लगाएर बेचियो । यदि मु.अ.करसिहतको मूल्य र छुटपछिको मूल्यबीचको फरक रु.1800 भए मोबाइलको अंकित मूल्य पत्ता लगाउनुहोस् ।

After allowing 20% discount on the marked price of a Mobile, 15% VAT was levied and sold it. If the differences between selling price with VAT and selling price after discount is Rs. 1800, find the marked price of that Mobile.

- १३. एउटा त्रिभुजाकार जग्गाका किनाराहरु 5:6:7 को अनुपातमा छन्। यदि यसको परिमिति 1800 मिटर भए उक्त जग्गाको क्षेत्रफल कित हुन्छ ? पत्ता लगाउनुहोस्। The sides of a triangular field are in the ratio of 5:6:7. If its perimeter is
- १४. ल.स. निकाल्नुहोस् (Find the L.C.M of): $p^4 + p^3 p^2 p$, $p^4 p$ and $4p^2 4$

1800 m., what is the area of that field? Find it.

- १५. दुई अङ्कले बनेको एउटा संड्ख्यामा अङ्कहरुको योगफल 7 छ । यदि सो सङ्ख्याबाट 45 घटाइयो भने अङ्कहरुको स्थान परिवर्तन हुन्छ । सुरुको सङ्ख्या पत्ता लगाउनुहोस् ।

 The sum of the digits in a two digits number is 7. If 45 is subtracted from the number the places of the digits are interchanged. Find the initial number.
- 9६. एउटै आधार PQ र उही समानान्तर रेखाहरु PQ र SR बीच बनेको ΔPQR र ΔPQS को क्षेत्रफलहरु बराबर हुन्छन् भनी प्रमाणित गर्नुहोस्।
 Prove that the areas of triangles PQR and PQS standing on the same base PQ and between the same parallel lines PQ and SR are equal.
- १७. लम्बाइ 7.5 से.मी. र चौडाइ 6.5 से.मी. भएको आयतको क्षेत्रफलसँग बराबर हुने गरी एउटा कोण 30° भएको त्रिभुजको रचना गर्नुहोस्।
 - Construct a rectangle with length 7.5 cm and breadth 6.5 cm. Also construct a triangle having one angle 30° and equal in the area of the rectangle.
- १८. चक्रीय चतुर्भुज IJKL का सम्मुख कोणहरूबीचको सम्बन्ध प्रयोगद्वारा खोजी गर्नुहोस्। (कम्तीमा 3 से.मी. अर्धव्यास भएका दुईओटा वृत्तहरू आवश्यक छन्।)

 Explore experimentally the relationship between opposite angles of a cyclic quadrilateral IJKL. (Two circles having radii at least 3 cm are necessary)
- १९. एउटा वृत्ताकार पोखरीको व्यास 130 मिटर छ। उक्त पोखरीको ठीक बीचमा एउटा खम्बा गाडिएको छ। एउटा व्यक्तिले पोखरीको किनाराको कुनै बिन्दुबाट खम्बाको टुप्पोको उन्नतांश कोण θ° पाएछ। यदि पोखरीको गिहराइ 3 मिटर र खम्बाको उचाइ 68 मिटर भए θ° को मान पत्ता लगाउन्होस्।
 - The diameter of a circular pond is 130 meter and a pillar is fixed at the centre of pond. A person finds the angle of elevation θ^o of the top of the pillar from a point of the bank of the pond. If the depth of the pond is 3 meter and height of the pillar is 68 m. then find the value of θ^o .

२०. तल दिइएको आँकडाको तेस्रो चतुर्थांश $(Q_3) = 128$ भए x को मान पत्ता लगाउनुहोस्। Find the value of x if third quartile (Q_3) of the data given below is 128:

ज्याला (Wages Rs/hr.)	0-30	30-60	60-90	90-120	120-150	150-180
कामदार संख्या (No.of workers)	2	8	22	24	x	9

[4x5=20]

२१. एउटा बैंकले खाता M मा 10% प्रतिवर्ष अर्धवार्षिक चक्रीय ब्याजदर र खाता N मा 15% प्रतिवर्ष वार्षिक चक्रीय ब्याजदर कायम गरेको छ। यदि तपाईं 2 वर्षका लागि रु. 40,000 सो बैंकमा जम्मा गर्दै हुनुहुन्छ भने कुन खातामा जम्मा गर्नुहुन्छ र किन ? गणना गरी कारणसहित उल्लेख गर्नुहोस्।

A bank has fixed the rate of interest 10% per annum semi-annually compound interest in account M and 12% per annum annually compound interest in account N. If you are going to deposit Rs. 40,000 for 2 years in the same bank, in which account will you deposit and why? Give your reason with calculation.

२२. एउटा पानी ट्याङ्कीको तल्लो भाग बेलना र त्यसमाथि अर्धगोला हुने गरी बनेको छ । सो ट्याङ्कीको पूरा उचाइ 15 मिटर छ र आधारको क्षेत्रफल 154 वर्गमिटर भए उक्त ट्याङ्कीमा प्रतिलिटर रु. 0.35 का दरले पानी भर्न जम्मा कित खर्च लाग्छ ? पत्ता लगाउनुहोस् ।

A water tank is formed with the combination of cylinder in the lower part and hemisphere above it. The total height of the tank is 15 m and base area is 154 sq. m. If the tank is filled with water at the rate of Rs. 0.35 per litre, what is the total cost for the water? Find it.

२३. सरल गर्नुहोस् (Simplify):
$$\frac{\left(p^2-\frac{1}{q^2}\right)^p\left(p-\frac{1}{q}\right)^{q-p}}{\left(q^2-\frac{1}{p^2}\right)^q\left(q+\frac{1}{p}\right)^{p-q}}$$

२४. PQRS एउटा चक्रीय चतुर्भुज हो । यदि ∠QPS र ∠QRS का अर्धकहरुले वृत्तलाई क्रमशः विन्दुहरु M र N मा भेट्छन् भने MN वृत्तको व्यास हो भनी प्रमाणित गर्नुहोस् ।

PQRS is a cyclic quadrilateral. If the bisectors of \angle QPS and \angle QRS meet the circle at the points M and N respectively, then prove that MN is the diameter of the circle.

माध्यमिक शिक्षा परीक्षा २०७४ (SEE 2018) उत्तरकुञ्जिका (Marking Scheme)

पूर्णाङ्क:- १००

विषय: अनिवार्य गणित

उत्तरपुस्तिका परीक्षण कुञ्जिका उत्तरपुस्तिका परीक्षणको निम्ति परीक्षकलाई सामान्य मार्गनिर्देशन हो । परीक्षकले उत्तरको शुद्धता, स्तरीयता, मौलिकता आदि हेरी आवश्यकता अनुसार विवेक प्रयोग गरी स्तर अनुसार सही, स्पष्ट, उपयुक्त, मापनीय र स्तरीय मूल्याङ्कन गर्नुपर्ने छ । सम्भव भएसम्म कुञ्जिकाले निर्देश गरेको परिधि र सीमाभित्र रही मूल्याङ्कन गर्नुपर्ने छ ।

Note: Give the relevant mark(s) for other correct method.

प्रश्न नं.	उत्तर	अंक
	समूह "क"	
१ क	I. $D\% = \frac{y}{x} \times 100\%$	1
१ ख	I. T.S.A. of Sq. pyramid = $(2ab + a^2)$ sq.cm	1
२क	1. 4	1
२ ख	$I. Q_1 = L + \frac{\binom{N}{4} - c_i f_i}{f} \times i$	1
३ क	$I. \qquad \Delta PQR = \Delta SQR$	1
३ ख	$I. \qquad \angle PQT = \angle PSR$	1
	समूह "ख"	- 1
४ क	I. After devaluation, \$ 1 = 115.50	1
	II. Required dollars (\$) = 1500	1
४ ख	$P_T = 50000(1 + \frac{10}{100})^2$	1
	II. $P_T = 66550$	1
५ क	I. $673.75 \text{ Litres} = \pi r^2 h$	
	$673750 \ cm^3 = \frac{22}{7} \times r^2 \times 175 \ cm$	1
	II. $r = 35 \text{ cm}$	1
५ ख	I. $3\pi r^2 = 1848 \text{cm}^2$	1
	II. $r = 14 \text{ cm}$	1

५ ग	I.	$\frac{1}{3}\pi r^2 h = 1331\pi \text{ cm}^3$	
		$\frac{1}{3}\pi r^2 3r = 1331\pi \text{ cm}^3$	1
	II.	r = 11 cm	1
६क	I.	$1^{st} Expn = (b^2 - b + 1)$	
		$2^{nd} Expn = b (b+1) (b^2 - b + 1)$	1
		H.C.F. = $b^2 - b + 1$	1
६ख	I.	$\sqrt{4x^2 - 4} = (2x - 2)$	
		$4x^2 - 4 = 4x^2 - 8x + 4$	1
	II.	x = 1	1
७ क	I.	$a^y b^x = 16$	
		$4^{xy}.4^{xy} = 4^2$	1
	II.	xy = 1	1
७ ख	I.	$\frac{1}{a-b} - \frac{2b}{(a+b)(a-b)}$	
		a+b-2b	1
		(a+b)(a-b)	
	II.	$\frac{1}{a+b}$	1
७ ग	I.	$\frac{e^{5}-f^{5}+e^{5}+f^{5}}{(e+f)(e-f)}$	1
	II.	$\frac{2e^{5}}{e^{2}-f^{2}}$	1
	11.	e^2-f^2	1
८ क	I.	Area of rectangle PQRS = 48 cm^2	1
	II.	area of the $\triangle PQM = 24 \text{ cm}^2$	1
८ ख	I.	\angle SRM= 90° - 32° = 58°	1
	II.	$\angle MPS = 180^{\circ} - 58^{\circ} = 122^{\circ}$	1
८ ग	I.	$PT = \sqrt{TO^2 + PO^2}$	1
	II.	$PT = \sqrt{12^2 + 5^2}cm = 13cm$	1

_	Y / //WD //OD	
९ क	I. I. $\angle ATP = 60^{\circ}$	
	$18 = \frac{1}{2} \times 6 \times TA \frac{\sqrt{3}}{2}$	1
	2 2 3 3 7 7 2	1
	II. $TA = 4\sqrt{3} cm$	
९ ख	$I. \qquad \bar{x} = \frac{460 + 23\alpha}{20 + \alpha}$	1
	23(20+œ]	
	$II. = \frac{23(20+\alpha)}{20+\alpha}$	
	= 23	1
१० क	I. $P(Head) \frac{1}{2}; P(5) = \frac{1}{6}$	1
1 2 4	1. 1 (1101111) 2,1 (3) = 6	
	II. P(Head and 5) = $\frac{1}{2} \times \frac{1}{6} = \frac{1}{12}$	1
0		
१० ख	I. First draw with probabilities	1
	II. Second draw with probabilities	1
	7	
	8 7 7	
	18	
	10 17	
	86	
	$\frac{10}{18}$ $\frac{8}{17}$ G	
	ν	
	1 7	
	 समूह 'ग'	
99	I. $n(\cup) = 40000$, $n_0(P) = 20000$, $n_0(Q) = 15000$, $n(P \cap Q) = 3000$	1+1
	$H = n(1) = n \cdot (D) + n \cdot (O) + n(D \cap O) + v$	
	= 20000+15000+3000+x	1
	$\left \left(20000 \left(\begin{array}{c} \omega \\ \widetilde{g} \end{array} \right) 15000 \right) \right $	
	x = 40000 - 38000 = 2000	
	III. $n_0(P) + n_0(Q) = 20000 + 15000 = 35000$	1
	1	

	N.B.	: Give relevant marks for any other correct method.	
92	I.	Let M.P. of Camera be Rs. x	
		SP after discount = $(100 - D)\% \times MP$	
		$= (100-20)\% \times x$	1
		= 0.8x	
	II.	SP including VAT = $(100+V)\%$ x SP after discount	1
		$= (100+15)\% \times 0.8x$	
		= 0.92x	
	III.	By the question,	1
		SP including VAT – SP after discount = 1800	_
		0.92x - 0.8x = 1800	
	IV.	MP of Mobile $(x) = Rs. 15,000$	1
१३	I.	Let sides of triangular field $= 5x$, $6x$ and $7x$	
		P = 5x + 6x + 7x	1
		Or, $1800m = 18x$	
		x = 100m	1
	II.	Sides of triangular field:	1
		a = 5x = 500m, $b = 6x = 600m$, $c = 7x = 700m$	
	III.	$S = \frac{a+b+c}{2} = \frac{1800m}{2} = 900m$	1
	IV.	$A = \sqrt{s(s-a)(s-b)(s-c)}$	
		$=\sqrt{900(900-500)(900-600)(900-700)}$	
		$= 146969.39 \text{ m}^2$	
१४	I.	$1^{st} \exp = p^4 + p^3 - p^2 - p$	
		$= p(p+1) (p^2-1)$	1
		= p(p+1) (p+1) (p-1)	
	II.	$2^{\rm nd} \exp = p^4 - p$	
		$= p(p^3 - 1)$	1
		$= p(p-1) (p^2 + p + 1)$	_
	III.	Third $\exp = 4p^2 - 4$	
		$=4(p^2-1)$	1
		=4(p+1)(p-1)	1
	IV.	L.C.M. = H.C.F x remaining factors	1
		$= 4p (p+1)^{2} (p-1) (p^{2} + p + 1)$	1
9ሂ	I.	Let digit of ten's place = x	
		digit of one's place = y	
		$\therefore \text{ required number} = 10x + y$ In first condition, $x + y = 7$	1
	II.	In first condition $x + y = 7$ In second condition $10x + y - 45 = 10y + x$	1
	III.	By solving equation, $x = 6$, $y = 1$	1
	IV.	$\therefore \text{ required number} = 10x + y = 61$	1

१६	I.	correct figure + given				
	То	o prove : Area (ΔPQR) = Area (ΔPQS)	1			
	Co	Construction: Draw PT⊥PQ				
	II.	Ar. $(\Delta PQR) = \frac{1}{2} PQ \times TP \rightarrow Area \text{ of } \Delta = \frac{1}{2} b \times h \dots (1)$	1			
	III.	$Ar(\Delta PQS) = \frac{1}{2} PQ \times TP \rightarrow Area \text{ of } \Delta = \frac{1}{2} b \times h \dots$ (ii)	1			
	IV.	Area $(\Delta PQR) = \frac{1}{2}$ Area $(\Delta PQS) \rightarrow$ from (i) and (ii)				
		Note: Give marks for alternative method also	1			
99	I.	Construction of rectangle A E D	1			
	II.	Construction of angle of triangle	1			
	III.	Construction of triangle, 6.5cm 30°	1			
	IV.	conclusion B 7.5 cm C 7.5 cm F	1			
95	I.	Correct figure	1			
	II. III.	Verification table Conclusion	1+1 1			
98	I.	Correct figure and description A	1			
	II.	In rt. angled $\triangle AOB$				
		$\tan\theta = \frac{oA}{oB} = \frac{65}{65}$ 68–3–65	1			
	111	$\theta \downarrow \theta \downarrow B$	1			
	III.	Or $\tan\theta = 1 = \tan 45^{\circ}$ $\theta = 45^{\circ}$ 130m	1			
20	IV.					
२०		Marks (x) No. of Students (f) c.f 0-30 2 2				
		30-60 8 10				
		60-90 22 32	1			
		90-120 24 56	1			
		120-150 x 56+x				
	т	150-180 9 65+x				
	I.	Correct c.f. table	1			
	II.	$\therefore Q_3 = 128; Q_3 \text{ class} = 120-150$ $128 - 120 + \frac{120}{4} - \frac{120}{4} = 120 + \frac$	1			
	III.	128- 120+				
		$128-120 = \frac{195+3x-224}{4x} \times 15$				
	IV.	29x = 435				
		x = 15				
		समूह 'घ'				

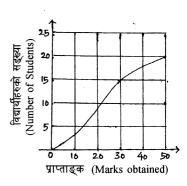
		[4 25.27]	
२१	I.	$H. Y. C. I = P \left[\left(1 + \frac{R}{200} \right)^{2T} - 1 \right]$	
		$=40000\left[\left(1+\frac{10}{200}\right)^{2\times2}-1\right]$	1
	II.	= Rs. 8620.25	1
	III.	$Y.C.I = P\left[\left(1 + \frac{R}{100}\right)^{T} - 1\right],$	
		[1 2007]	1
		$=40000\left[\left(1+\frac{15}{100}\right)^{2}-1\right]$	1
	IV.	= Rs. 12900	1
	V.	Finding difference of C.I. with logical reason. Note: Using R = 15%, then score as above by Rs.4279.75	
२२	I.	Radius of tank (r) = 7 m	1
	II.	Height of cylindrical part (h) = 8 m	1
	III.	Volume of $tank = Axh + \frac{2}{3}\pi r^3$	
		$= 154 \times 8 + \frac{2}{5} \times \frac{22}{5} \times 343$	1
		$= 1950.67 \text{ m}^3$	1 1
	IV.	Volume of water $(V) = 1950670$ liters	1
	V.	Total cost $(T) = Rs. 682734.50$	
२३	I. (m.	$(-2)^{p}(n-2)^{p}(n-2)^{q-p}$	1
	(q-	$\frac{+\frac{1}{q})^{p} \left(p - \frac{1}{q}\right)^{q} \left(p - \frac{1}{q}\right)^{q} - \frac{1}{q}}{+\frac{1}{m})^{q} \left(q - \frac{1}{m}\right)^{q} \left(q + \frac{1}{m}\right)^{p-q}}$	1
	- ·	Fr. 1 Fr. 1 Fr.	
	II.	$\frac{\left(p+\frac{1}{q}\right)^p \left(p-\frac{1}{q}\right)^q}{\left(q+\frac{1}{p}\right)^p \left(q-\frac{1}{p}\right)^q}$	1
		$\left(\frac{pq+1}{q}\right)^p\left(\frac{pq-1}{q}\right)^q$	1
	III.	$\left(\frac{\frac{pq+1}{q}}{\frac{pq+1}{p}}\right)^p \left(\frac{\frac{pq-1}{q}}{\frac{pq-1}{p}}\right)^q$	1
	IV.	$\left(\frac{p}{a}\right)^p \left(\frac{p}{a}\right)^q$	1
	V.	$\left(\frac{p}{a}\right)_{b+d}$	
२४	I.	Correct fig. with construction. (P and S are joined and R and M are also	1
7 0	II.	$\angle MPS = \frac{1}{2} \angle QPS$ and $\angle NRS = \frac{1}{2} \angle QRS$	1
	III.	$\angle MPS + \angle NRS = 90^{\circ}$	1
	IV.	\angle MPS = \angle MRS, hence, \angle MRS + \angle MPS = \angle MRN =	1
	V.	∴ \angle MRN = 90° & MN is the diameter.	1
			1

SEE 2074 (2018) अनिवार्य गणित (परानो पाठ्यक्रम)

दिइएका निर्देशनका आधारमा आफ्नै शैलीमा सिर्जनात्मक उत्तर दिनुहोस् ।

समय: ३ घन्टा

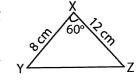
पूर्णाङ्क - १००

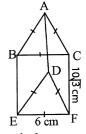

सबै प्रश्नहरूको उत्तर दिनुहोस् । Answer all the questions.

समूह 'क' (Group 'A')

[9x(2+2)=36]

- 9. (क) मान निकाल्नुहोस् (Evaluate): $\frac{2^{m+1} + 2^m}{2^{m+2} 2^m}$
 - (ख) सरल गर्नुहोस् (Simplify): $\sqrt[3]{2a^5b^{10}} \times \sqrt[3]{4ab^{-1}}$
- २. (क) हल गर्नुहोस् (Solve): $2\sqrt{x+3} = \sqrt{5x-1}$
 - (ख) एउटा विद्यालयको पोसाकको कमिज पाइन्टभन्दा रु. 100 ले सस्तो छ । यदि पाइन्ट र कमिजको जम्मा मूल्य रु. 770 पर्दछ भने प्रत्येकको मूल्य निकालनुहोस् ।

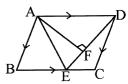

 The shirt of the uniform of a school is Rs. 100 cheaper than the pant. If the total cost of the pant and shirt is Rs. 770, find the cost of each.
- ३. (क) एउटा वर्गीकृत तथ्याङ्कमा केही विद्यार्थीहरुले गणितमा प्राप्त गरेका अङ्कहरुको योगफल 3000 छ । यदि औसत प्राप्ताङ्क 60 छ भने विद्यार्थीहरुको संख्या पत्ता लगाउनुहोस् । In a grouped data, the sum of the marks obtained by a certain number of students in maths is 3000. If the average mark is 60, find the number of students.
 - (ख) दिइएको सञ्चित बारम्बारताको वक्रबाट तेस्रो चतुर्थाश पर्ने श्रेणी पत्ता लगाउनुहोस्। Find the third quartile class from the given cumulative frequency curve.


- ४. (क) राम्ररी फिटिएको 52 पत्ती भएको तासको एक प्याकेटबाट नहेरीकन एउटा तास निकाल्दा अनुहार भएको वा एक्का हुने सम्भाव्यता कित हुन्छ ? पत्ता लगाउनुहोस् । What is the probability of getting a faced card or an ace card when a card is drawn randomly from a well-shuffled pack of 52 cards? Find it.
 - एउटा सिक्कालाइ दुई पटकसम्म उफार्दा आउन सक्ने सम्भावित परिणामहरुको सम्भाव्यताहरुलाई
 एउटा वृक्षचित्रमा देखाउनुहोस् ।
 Show the probabilities of possible outcomes in a tree diagram when a

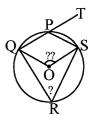
Show the probabilities of possible outcomes in a tree diagram when a coin is tossed two times.

५. (क) दिइएको चित्रमा XY=8 से.मी., XZ=12 से.मी., र $\angle YXZ=60^{\circ}$ भए ΔXYZ को क्षेत्रफल निकालनुहोस् । In the given figure, XY=8 cm, XZ=12 cm and $\angle YXZ=60^{\circ}$. Find the area of ΔXYZ .

(ख) दिइएको चित्रमा DE = EF = FD = 6 से.मी. र $CF = 10\sqrt{3}$ से.मी. छन्। उक्त प्रिज्मको आयतन पत्ता लगाउनुहोस्। In the given figure, DE = EF = FD = 6 cm and $CF = 10\sqrt{3}$ cm. Find the volume of the prism.

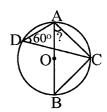


- (क) एउटा बेलनाको आधारको परिधि 44 से.मी. छ । यदि अर्धव्यास र उचाइको योगफल 27 से.मी. छ भने सो बेलनाको पूरा सतहको क्षेत्रफल निकाल्नुहोस् ।
 The circumference of the base of a cylinder is 44 cm. If the sum of the radius and height is 27 cm, find the total surface area of the cylinder.
 - (ख) एउटा सोलीको आयतन 12π घन से.मी. छ। यदि आधारको अर्धव्यास 3 से.मी. छ भने सोलीको छड्के उचाइ निकाल्नुहोस्।

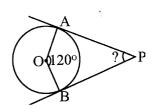

 The volume of a cone is 12π cubic cm. If the radius of the base is 3 cm, find the slant height of the cone.
- ७. (क) एउटा घडी रु. 700 मा बेच्दा $12\frac{1}{2}\%$ घाटा हुन्छ भने सो घडीको क्रयमूल्य पत्ता लगाउनुहोस्।

A watch is sold for Rs. 700 at a loss of $12\frac{1}{2}$ %. Find the cost price of the watch.

- (ख) एउटा मोबाइल सेट रु. 25000 मा किनियो। यदि वार्षिक ह्रासदर 5% छ भने 2 वर्षपछि सो मोबाइल सेटको विक्रयमूल्य कित होला? पत्ता लगाउनुहोस्।
 A mobile set is bought for Rs. 25000. If the annual rate of depreciation is 5%, what will be the selling price of the mobile set after 2 years? Find it.
- द्र. (क) दिइएको चित्रमा AD \parallel BC, AB \parallel DC र AF \perp DE छन् । यदि AF = 6 से.मी. र DE = 10 से.मी. छन् भने \Box ABCD को क्षेत्रफल निकाल्नुहोस् । In the given diagram, AD \parallel BC, AB \parallel DC and AF \perp DE. If AF = 6 cm and DE = 10 cm, find the area of \Box ABCD.



(ख) दिइएको चित्रमा O वृत्तको केन्द्रबिन्दु हो । यदि ∠SPT=60°भए
 ∠QRS र ∠QOS का मानहरु निकाल्नुहोस् ।
 In the given figure, O is the centre of the circle. If
 ∠SPT=60°, find the values of ∠QRS and ∠QOS.



९. (क) दिइएको चित्रमा O वृत्तको केन्द्रबिन्दु हो। यदि $\angle ADC = 60^{\circ}$ छ भने $\angle BAC$ को नाप कित हुन्छ ? पत्ता लगाउनुहोस्।

In the given figure, O is the centre of the circle. If $\angle ADC = 60^{\circ}$, what is the size of $\angle BAC$? Find it.

(ख) दिइएको चित्रमा PA र PB दुई स्पर्शरेखाहरु हुन् र O वृक्तको केन्द्रबिन्दु हो । यदि ∠AOB = 120° भए ∠APB को मान निकाल्नुहोस्।
In the given figure, PA and PB are two tangents and O is the centre of the circle. If ∠AOB= 120°, find the value of ∠APB.

(16x4=64)

90. 50 जना विद्यार्थीहरुको समूहमा 15 जनाले नेपाली र अङ्ग्रेजी दुवै विषय मन पराउँछन् र 5 जनाले दुई विषयमध्ये कुनै पिन मन पराउँदैनन् । यदि नेपाली विषयमात्र मन पर्ने विद्यार्थीहरुको संख्या र अङ्ग्रेजीमात्र मन पराउने विद्यार्थीहरुको संख्या 2:1 को अनुपातमा छन् भने भेनचित्र प्रयोग गरेर अङ्ग्रेजी विषय मन नपराउने विद्यार्थीहरुको संख्या निकाल्नुहोस् ।

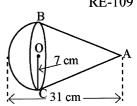
In a group of 50 students 15 like both Nepali and English subject and 5 do not like any of the two subjects. If the number of students who like Nepali only and the number of students who like English only are in the ratio of 2:1, find the number of students who do not like English subject by using venn-diagram.

११. म.स. निकाल्नुहोस् (Find the H.C.F of) : $12x^4 - 27x^2y^2$, $16x^4 + 54xy^3$ and $4x^3 + 2x^2y - 6xy^2$

१२. हल गर्नुहोस् (Solve) : $16^x - 5 \times 4^{x+1} + 64 = 0$

१३. सरल गर्नुहोस् (Simplify):
$$\frac{1}{x-y} - \frac{2}{2x+y} + \frac{1}{x+y} - \frac{2}{2x-y}$$

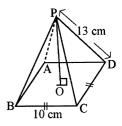
१४. एउटा आयताकार बगैंचाको परिमिति 46 मी. र क्षेत्रफल 126 वर्ग मी. छन् भने उक्त बगैंचाको लम्बाइ र चौडाइ पत्ता लगाउनुहोस् ।


The perimeter of a rectangular garden is 46 m and the area is 126 sq.m. Find the length and breadth of the garden.

१५. तल दिइएको तथ्याङ्कको मध्यिका पत्ता लगाउनुहोस् : Find the median of the data given below:

प्राप्ताङ्क (Marks obtained)	0-20	20-40	40-60	60-80	80-100
विद्यार्थी संख्या (No. of Students)	2	3	5	4	6

१६. 75 फिट अग्लो एउटा घरको छतबाट एउटा रुखको टुप्पो अवलोकन गर्दा अवनित कोण 30° पाइयो। यदि घर र रुखबीचको दूरी $25\sqrt{3}$ फिट छ भने रुखको उचाइ पत्ता लगाउनुहोस्। The angle of depression of the top of a tree as observed from the roof of a house 75 ft. high was found to be 30° . If the distance between the house and tree is $25\sqrt{3}$ ft., find the height of the tree.


१७. दिइएको चित्र एउटा अर्धगोला र एउटा सोली मिली बनेको ठोस वस्तुको हो। यदि सोली र अर्धगोलाको साभा अर्धव्यास 7 से.मी. र वस्तुको पूरा लम्बाइ 31 से.मी छन् भने सो वस्तुको पूरा सतहको क्षेत्रफल निकाल्नुहोस्।

The given figure is of a solid object made up of a hemi-sphere and a cone. If the common radius of the cone and hemi-sphere is 7 cm and the total length of the object is 31 cm, Find the total surface area of the object.

१८. दिइएको चित्रमा ABCD एउटा पिरामिडको वर्गाकार आधार हो । OP यसको उचाइ र PD छड्के िकनारा हो । यदि PD=13 से.मी. र BC=10 से.मी. छन् भने सो पिरामिडको आयतन पत्ता लगाउनुहोस् ।

In the given figure, ABCD is a square base of a pyramid, OP its height and PD is the lateral edge. If PD = 13 cm and BC = 10 cm, find the volume of the pyramid.

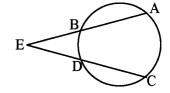
9९. A ले एउटा कामको $\frac{2}{5}$ भाग काम 9 दिनमा सिध्याउँछ र बाँकी काम पूरा गर्न उसले B लाई बोलाउँछ । यदि दुवै मिली सो काम 6 दिनमा सिध्याउँछन् भने B एक्लैलाई पूरा काम सिध्याउन कित दिन लाग्ला ? पत्ता लगाउनुहोस् ।

A finishes $\frac{2}{5}$ part of a work in 9 days and he calls B to complete the remaining work. If both of them finish the work in 6 days, how many days will B alone take to finish the whole work? Find it.

२०. एउटा स्कुटरको अङ्कित मूल्य रु. 2,50,000 छ । यदि पसलेले 15% छुट दिएपछि 13% मूल्य अभिवृद्धि कर लगाउँछ भने एक जना ग्राहकले सो स्कुटर किन्न कित तिर्नुपर्ला ? पत्ता लगाउन्होस् ।

The marked price of a Scooter is Rs. 2,50,000. If the shopkeeper allows 15% discount and levies 13% value added tax, how much should a customer have to pay to buy the Scooter? Find it.

२१. कुनै धनको वार्षिक 10% का दरले 2 वर्षको साधारण ब्याज रु. 400 हुन्छ भने त्यही समय र ब्याजदरले सोही धनको चक्रीय ब्याज पत्ता लगाउनुहोस्।


The simple interest on a certain sum of money at the rate of 10% per annum in 2 years is Rs. 400. Find the compound interest of the same sum at the same rate and for the same duration of time.

२२. एउटै आधार MN र उही समानान्तर रेखाहरू MN र AB बीच रहेका त्रिभुजहरू AMN र BMN का क्षेत्रफल बराबर हुन्छन् भनी प्रमाणित गर्नुहोस्।

Prove that the areas of AAMN and ABMN standing on the same base

Prove that the areas of ΔAMN and ΔBMN standing on the same base MN and between the same parallel lines MN and AB are equal.

२३. दिइएको चित्रमा वृत्तका जीवाहरू AB र CD बाह्यबिन्दु E मा भेटिएका छन् भने सिद्ध गर्नु हो स् : $\angle AEC = \frac{1}{2}(\widehat{AC} - \widehat{BD})$

In the given figure, chords AB and CD of the circle meet at an external point E. Prove that:

$$\angle AEC = \frac{1}{2} (\widehat{AC} - \widehat{BD})$$

- २४. चक्रीय चतुर्भुज PQRS का सम्मुख कोणहरु QPS र SRQ परिपूरक हुन्छन् भनी प्रयोगद्वारा परीक्षण गर्नुहोस् । (कम्तीमा 3 से.मी. अर्धव्यास भएका दुईओटा वृत्तहरु आवश्यक छन् ।) Verify experimentally that the opposite angles QPS and SRQ of the cyclic quadrilateral PQRS are supplementary. (Two circles of radii at least 3 cm are necessary.)
- २५. a=7.8 से.मी., b=7.2 से.मी र c=6.5 से.मी. भएको ΔABC को रचना गर्नुहोस्। उक्त ΔABC को क्षेत्रफलसँग बराबर हुने एउटा आयत CDEF को पिन रचना गर्नुहोस्। Construct a ΔABC having a=7.8 cm, b=7.2 cm and c=6.5 cm. Also construct a rectangle CDEF equal in area to ΔABC .

माध्यमिक शिक्षा परीक्षा २०७४ (SEE 2018) उत्तरकुञ्जिका (Marking Scheme)

पूर्णाङ्क:- १००

विषय: अनिवार्य गणित

उत्तरपुस्तिका परीक्षण कुञ्जिका उत्तरपुस्तिका परीक्षणको निम्ति परीक्षकलाई सामान्य मार्गनिर्देशन हो। परीक्षकले उत्तरको शुद्धता, स्तरीयता, मौलिकता आदि हेरी आवश्यकता अनुसार विवेक प्रयोग गरी स्तर अनुसार सही, स्पष्ट, उपयुक्त, मापनीय र स्तरीय मूल्याङ्कन गर्नुपर्ने छ। सम्भव भएसम्म कुञ्जिकाले निर्देश गरेको परिधि र सीमाभित्र रही मूल्याङ्कन गर्नुपर्ने छ।

Note: Give the relevant mark(s) for other correct method.

प्रश्न		उत्तर	अंक			
नं.						
	समूह "क"					
9 क	I. $\frac{2^m(2+1)}{2^m(4-1)}$	67	1			
	II. 1		1			
१ ख	I. $\sqrt[3]{8a^6b^9}$		1			
	II. $2a^2b^3$		1			
२ क	I. 4x + 12 = 5x-1		1			
	$II. \qquad x = 13$		1			
२ ख	I. Let price of pant = $Rs x$					
	$\therefore x + x - 100 = 770$		1			
	II. $x = Rs.435 & x - 100 = R$	Rs.335	1			
३ क	I. $N = \frac{3000}{60}$		1			
	II. $N = 50$		1			
३ ख	I. Position of $Q_3 = 15^{th}$ term	1	1			
	II. $Q_3 \text{ class} = 30 - 40$		1			
४ क	1. $P(F) = \frac{3}{13}$ and $P(A)$	$=\frac{1}{13}$	1			
	II. $P(F \cup A) = \frac{4}{13}$		1			

V 1.7		1	
४ ख	I.	$\frac{1}{2}$ H $\frac{1}{2}$ T $\frac{1}{2}$ T $\frac{1}{2}$ T $\frac{1}{2}$ T	1+1
५ क	I.	$\Delta XYZ = \frac{1}{2} \times 8 \times 12 \times \frac{\sqrt{3}}{2}$	1
	II.	$\Delta XYZ = 24\sqrt{3} \text{ sq.cm}$	1
५ ख	I.	Base area = $\frac{\sqrt{3}}{4}6^2 = 9\sqrt{3}\text{cm}^2$	1
	II.	$V = 270 \text{ cm}^3$	1
६क	I.	$T.S.A = C \times (r + h) = 44 \times 27$	1
	II.	$TSA = 1188 \text{ cm}^2$	1
६ख	I.	$12\pi = \frac{1}{3} \times \pi \times 3^2 \times h$	
		h = 4 cm	1
	II.	$l = \sqrt{3^2 + 4^2} = 5 \text{ cm}$	1
७ क	I.	$CP = \frac{700 \times 100}{100 - 12.5}$	1
	II.	CP = Rs. 800	1
७ ख	I.	$P_{\rm T} = 25000 \left(1 - \frac{5}{100}\right)^2$	1
	II.	$P_T = Rs. 22562.50$	1
८ क	I.	$\Delta AED = \frac{1}{2} \times 10 \times 6 = 30 \ cm^2$	1
			1

	II.	\Box ABCD = 60 cm ²	
<u> </u>	I.	$\angle QRS = 60^{\circ}$	1
	II.	$\angle QOS = 120^{O}$	1
९ क	I.	$\angle ABC = 60^{\circ}$	1
	II.	$\angle BAC = 90^{\circ} - 60^{\circ}$	1
		=30°	
९ ख	I.	$\angle A = \angle B = 90^{\circ}$	1
	II.	$\angle P = 60^{\circ}$	1
	,	समूह 'ख'	
90	I.	Let N and E represent set of students who like Nepali and English	1
		respectively. (50)	1
		$n_o(N) = 2x$ and $n_o(E) = x$	
	II.	2x + 15 + 5 = 50	
		$\therefore x = 10$	
	III.	n(E) = 20 + 5 = 25	
99	I.	$I^{st} Exp. = 3x^2 (2x+3y) (2x-3y)$	1
	II.	$2^{nd} Exp. = 2x (2x+3y) (4x^2 - 6xy + 9y^2)$	1
	III.	$3^{rd} Exp. = 2x (2x+3y) (x-y)$	1
	IV.	HCF = x(2x+3y)	1
		(1) 2 2 1) (1)	
92	I.	$(4^{x})^{2} - 20 \times 4^{x} + 64 = 0$	1
	II.	$(4^x - 16)(4^x - 4) = 0$	1
	III.	x = 2	1
	IV.	x = 1	1
9३	I.	$\frac{x+y+x-y}{(x+y)(x-y)} - \frac{2(2x-y+2x+y)}{(2x+y)(2x-y)}$	1
	II.	$\frac{2x}{x^2 - y^2} - \frac{8x}{4x^2 - y^2}$	1

		$0x^3 2x_1^2 0x^3 10x_1^2$	1
	III.	$\frac{8x^3 - 2xy^2 - 8x^3 + 8xy^2}{(x^2 - y^2)(4x^2 - y^2)}$	1
	IV.	$\frac{6xy^2}{4x^4 - 5x^2y^2 + y^4}$	1
98	I.	1+b = 23	
		1b = 126	1
	II.	$l - b = \sqrt{23^2 - 4 \times 126}$	1
	III.	l = 14 m	1
	IV.	b = 9 m	1
9	I.	For correct c.f. table	1
	II.	M_d class = 40-60	1
	III.	$M_d = 40 + \frac{10-5}{5} \times 20$	1
		$M_{\rm d} = 60$	1
१६	I.	correct figure + description	1
	II.	$\frac{1}{\sqrt{3}} = \frac{AE}{25\sqrt{3}}$	1
	III.	AE = 25 $75 ft$ E C	1
	IV.	∴ Height of tree = 50 ft. \blacksquare B \blacksquare D \blacksquare 25 $\sqrt{3}$ ft	1
<u>৭৩</u>	- I.	Slant height (l) = 25 cm	1
	II.	$CSA ext{ of cone} = 550 ext{ cm}^2$	1
	III.	$CSA ext{ of hemi-sphere} = 308 ext{ cm}^2$	1
	IV.	$TSA = 858 \text{ cm}^2$	1
95	I.	Slant height (l) = 12 cm	1
	II.	height (h) = 10.9 cm	1
	III.	$V = \frac{1}{3} \times 10^2 \times 10.9$	1
	IV.	$V = 363.33 \text{ cm}^3$	1
98	I.	A's 1 days work = $\frac{2}{45}$	1
	II.	(A+B)'s 1 days work = $\frac{1}{6} \times \frac{3}{5} = \frac{1}{10}$	1
	III.	B's 1 days work = $\frac{1}{10} - \frac{2}{45} = \frac{1}{18}$	1
	IV.	B can do in 18 days.	1
			1

२०	I.	Discount amount = 250000 x 15% = Rs.37500	1
	II.	SP = Rs. 212500	1
	III.	VAT amount = Rs.27625	1
	IV.	SP with $VAT = Rs. 240125$	1
२१	I.	$400 = \frac{P \times 2 \times 10}{100}$	1
	II.	P = Rs. 2000	1
	III.	$CI = 2000[(1 + \frac{10}{100})^2 - 1]$	1
	IV.	CI = Rs. 420	1
२२	I.	For construction MC NB B C A	1
	II.	Δ AMN = $\frac{1}{2}$ \square MNBC (with correct reason)	1
	III.	$\Delta BMN = \frac{1}{2} \square MNBC$ with correct reason N M	1
	IV.	$\therefore \Delta AMN = \Delta BMN$	1
72	I.	For construction: join AD	1
२३	1.		1
	II.	$\angle D \equiv \frac{1}{2}\widehat{AC}$	
		$\angle A \equiv \frac{1}{2}\widehat{BD}$	1
	III.	$\angle E = \angle D - \angle A$	1
	IV.	$\therefore \angle AEC \equiv \frac{1}{2} (\widehat{AC} - \widehat{BD})$	1
२४	I.	For correct figures	1
	II.	For correct measurements	1+1
	III.	For conclusion	1
२५	I.	For construction of ΔABC	1
	II.	For drawing line to BC	1
	III.	For drawing perpendicular bisector of BC	1
	IV.	For rectangle CDEF	1